
Polyspace® Products for C 8
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Products for C User’s Guide

© COPYRIGHT 1999–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2008 Online Only Revised for Version 5.1 (Release 2008a)
October 2008 Online Only Revised for Version 6.0 (Release 2008b)
March 2009 Online Only Revised for Version 7.0 (Release 2009a)
September 2009 Online Only Revised for Version 7.1 (Release 2009b)
March 2010 Online Only Revised for Version 7.2 (Release 2010a)
September 2010 Online Only Revised for Version 8.0 (Release 2010b)
April 2011 Online Only Revised for Version 8.1 (Release 2011a)

Contents

Introduction to Polyspace Products

1
Introduction to Polyspace Products 1-2
Overview of Polyspace Verification 1-2
The Value of Polyspace Verification 1-2
How Polyspace Verification Works 1-4
Product Components . 1-6
Installing Polyspace Products . 1-13
Related Products . 1-13

Polyspace Documentation . 1-14
About this Guide . 1-14
Related Documentation . 1-14

How to Use Polyspace Software

2
Polyspace Verification and the Software Development
Cycle . 2-2
Software Quality and Productivity 2-2
Best Practices for Verification Workflow 2-3

Implementing a Process for Polyspace Verification . . . 2-4
Overview of the Polyspace Process . 2-4
Defining Quality Objectives . 2-5
Defining a Verification Process to Meet Your Objectives . . 2-11
Applying Your Verification Process to Assess Code
Quality . 2-12

Improving Your Verification Process 2-12

Sample Workflows for Polyspace Verification 2-13
Overview of Verification Workflows 2-13

v

Software Developers and Testers – Standard Development
Process . 2-14

Software Developers and Testers – Rigorous Development
Process . 2-17

Quality Engineers – Code Acceptance Criteria 2-21
Quality Engineers – Certification/Qualification 2-24
Model-Based Design Users — Verifying Generated Code . . 2-25
Project Managers — Integrating Polyspace Verification
with Configuration Management Tools 2-29

Setting Up a Verification Project

3
Creating a Project . 3-2
What Is a Project? . 3-2
Project Folders . 3-3
Opening Polyspace Verification Environment 3-3
Creating New Projects . 3-5
Opening Existing Projects . 3-8
Closing Existing Projects . 3-10
Specifying Source Files . 3-10
Specifying Include Folders . 3-12
Managing Include File Sequence . 3-14
Creating Multiple Verifications . 3-15
Creating Multiple Analysis Option Configurations 3-16
Changing Project Location . 3-18
Specifying Target Environment . 3-19
Specifying Analysis Options . 3-19
Configuring Text and XML Editors 3-20
Saving the Project . 3-22

Specifying Options to Match Your Quality
Objectives . 3-23
Quality Objectives Overview . 3-23
Choosing Contextual Verification Options 3-23
Choosing Strict or Permissive Verification Options 3-26
Choosing Coding Rules . 3-28

Setting Up Project to Check Coding Rules 3-30
Polyspace MISRA Checker Overview 3-30

vi Contents

Checking Compliance with MISRA C Coding Rules 3-30

Setting up Project to Automatically Test Orange
Code . 3-32
Polyspace Automatic Orange Tester 3-32
Enabling the Automatic Orange Tester 3-32

Setting Up Project to Generate Metrics 3-34
About Polyspace Metrics . 3-34
Enabling Polyspace Metrics . 3-34
Specifying Automatic Verification . 3-35

Emulating Your Runtime Environment

4
Setting Up a Target . 4-2
Target/Compiler Overview . 4-2
Specifying Target Environment . 4-3
Predefined Target Processor Specifications 4-4
Modifying Predefined Target Processor Attributes 4-7
Defining Generic Target Processors 4-9
Common Generic Targets . 4-10
Viewing Existing Generic Targets . 4-11
Deleting a Generic Target . 4-12
Compiling Operating System Dependent Code (OS-target
issues) . 4-13

Address Alignment . 4-17
Ignoring or Replacing Keywords Before Compilation 4-18
Verifying Code That Uses KEIL or IAR Dialects 4-20
How to Gather Compilation Options Efficiently 4-28

Verifying an Application Without a “Main” 4-30
Main Generator Overview . 4-30
Automatically Generating a Main . 4-31
Manually Generating a Main . 4-32
Main Generator Assumptions . 4-33

Specifying Data Ranges for Variables and Functions
(Contextual Verification) . 4-34

vii

Overview of Data Range Specifications (DRS) 4-34
Specifying Data Ranges Using DRS Template 4-35
DRS Configuration Settings . 4-38
Specifying Data Ranges Using Existing DRS
Configuration . 4-42

Editing Existing DRS Configuration 4-43
Specifying Data Ranges Using Text Files 4-44
Variable Scope . 4-47
Performing Efficient Module Testing with DRS 4-51
Reducing Oranges with DRS . 4-52

Preparing Source Code for Verification

5
Stubbing . 5-2
Stubbing Overview . 5-2
Manual vs. Automatic Stubbing . 5-2
Adding Precision Constraints Using Stubs 5-6
Default and Alternative Behavior for Stubbing (PURE and
WORST) . 5-7

Function Pointer Cases . 5-10
Stubbing Functions with a Variable Argument Number . . 5-10
Finding Bugs in _polyspace_stdstubs.c 5-12

Preparing Code for Variables . 5-13
Assigning Ranges to Variables/Assert? 5-13
Checking Properties on Global Variables: Global Assert . . 5-14
Modeling Variable Values External to Your Application . . 5-14
Initializing Variables . 5-15
Verifying Code with Undefined or Undeclared Variables
and Functions . 5-17

Preparing Code for Built-In Functions 5-18

Preparing Multitasking Code . 5-19
Polyspace Software Assumptions . 5-19
Modelling Synchronous Tasks . 5-20
Modelling Interruptions and Asynchronous Events, Tasks,
andThreads . 5-22

viii Contents

Are Interruptions Maskable or Preemptive by Default? . . . 5-24
Shared Variables . 5-26
Mailboxes . 5-29
Atomicity (Can an Instruction Be Interrupted by
Another?) . 5-31

Priorities . 5-33

Highlighting Known Coding Rule Violations and
Run-Time Errors . 5-34
Annotating Code to Indicate Known Coding Rule
Violations . 5-34

Annotating Code to Indicate Known Run-Time Errors . . . 5-37

Verifying “Unsupported” Code . 5-41
Ignoring Assembly Code . 5-41
Dealing with Backward “goto” Statements 5-49
Types Promotion . 5-52

Running a Verification

6
Before Running Verification . 6-2
Types of Verification . 6-2
Specifying Source Files to Verify . 6-2
Specifying Results Folder . 6-3
Specifying Analysis Options Configuration 6-4
Checking for Compilation Problems 6-5

Running Verifications on Polyspace Server 6-9
Starting Server Verification . 6-9
What Happens When You Run Verification 6-10
Running Verification Unit-by-Unit 6-11
Managing Verification Jobs Using the Polyspace Queue
Manager . 6-13

Monitoring Progress of Server Verification 6-15
Viewing Verification Log File on Server 6-20
Stopping Server Verification Before It Completes 6-21
Removing Verification Jobs from Server Before They
Run . 6-22

ix

Changing Order of Verification Jobs in Server Queue 6-23
Purging Server Queue . 6-24
Changing Queue Manager Password 6-26
Sharing Server Verifications Between Users 6-27

Running Verifications on Polyspace Client 6-30
Specifying Source Files to Verify . 6-30
Starting Verification on Client . 6-31
What Happens When You Run Verification 6-33
Monitoring the Progress of the Verification 6-33
Stopping the Verification Before It is Complete 6-34

Running Verifications from Command Line 6-36
Launching Verifications in Batch . 6-36
Managing Verifications in Batch . 6-36

Troubleshooting Verification Problems

7
Verification Process Failed Errors 7-2
Messages Described in This Section 7-2
Hardware Does Not Meet Requirements 7-2
You Did Not Specify the Location of Included Files 7-3
Polyspace Software Cannot Find the Server 7-4
Limit on Assignments and Function Calls 7-6

Compilation Errors . 7-7
Compilation Error Overview . 7-7
Checking Compilation Before Running Verification 7-8
Configuring a Text Editor . 7-8
Examining Compile Log After Launching Verification 7-8
Compiler Messages Described in This Section 7-10
Syntax Error . 7-10
Undeclared Identifier . 7-11
No Such File or Folder . 7-12
#error directive . 7-13
Errors Resulting from Unsupported Non-ANSI Keywords
Such as @interrupt . 7-14

x Contents

Link Errors and Warnings . 7-16
Link Error Overview . 7-16
Function: Wrong Argument Type . 7-17
Function: Wrong Argument Number 7-17
Variable: Wrong Type . 7-18
Variable: Signed/Unsigned . 7-18
Variable: Different Qualifier . 7-19
Variable: Array Against Variable . 7-19
Variable: Wrong Array Size . 7-20
Missing Required Prototype for varargs 7-20

Stubbing Errors . 7-22
Conflicts Between Standard Library Functions and
Polyspace Stubs . 7-22

_polyspace_stdstubs.c Compilation Errors 7-22
General Troubleshooting Approaches 7-24
Restart with the -I option . 7-24
Include Files with Stubs to Replace Automatic Stubbing . . 7-25
Create a _polyspace_stdstubs.c File with Necessary
Includes . 7-26

Provide a .c file Containing a Prototype Function 7-27
Ignore _polyspace_stdstubs.c . 7-28

Automatic Stub Creation Errors . 7-29
Three Types of Error Messages . 7-29
Function Pointer Error . 7-29
Unknown Prototype Error . 7-31
Parameter -entry-points Error . 7-31

Reducing Verification Time . 7-32
Factors Impacting Verification Time 7-32
Displaying Verification Status Information 7-33
Techniques for Improving Verification Performance 7-34
Turning Antivirus Software Off . 7-36
Tuning Polyspace Parameters . 7-36
Subdividing Code . 7-37
Reducing Procedure Complexity . 7-47
Reducing Task Complexity . 7-49
Reducing Variable Complexity . 7-49
Choosing Lower Precision . 7-50

Obtaining Configuration Information 7-51

xi

Removing Preliminary Results Files 7-54

Reviewing Verification Results

8
Before You Review Polyspace Results 8-2
Overview: Understanding Polyspace Results 8-2
Why Gray Follows Red and Green Follows Orange 8-3
The Message and What It Means . 8-4
The C Explanation . 8-5

Opening Verification Results . 8-8
Downloading Results from Server to Client 8-8
Downloading Server Results Using Command Line 8-10
Downloading Results from Unit-by-Unit Verifications 8-11
Opening Verification Results from Project Manager
Perspective . 8-12

Opening Verification Results from Run-Time Checks
Perspective . 8-13

Exploring the Run-Time Checks Perspective 8-14
Selecting Mode . 8-29
Searching Results in Run-Time Checks Perspective 8-30
Setting Character Encoding Preferences 8-31
Opening Results for Generated Code 8-33

Reviewing Results in Assistant Mode 8-35
What Is Assistant Mode? . 8-35
Switching to Assistant Mode . 8-36
Selecting the Methodology and Criterion Level 8-38
Viewing Methodology Requirements 8-38
Defining a Custom Methodology . 8-41
Reviewing Checks . 8-43
Saving Review Comments . 8-46

Reviewing Results in Manual Mode 8-47
What Is Manual Mode? . 8-47
Switching to Manual Mode . 8-47
Selecting a Check to Review . 8-47
Displaying the Call Sequence for a Check 8-51

xii Contents

Displaying the Access Graph for Variables 8-52
Filtering Checks . 8-53
Saving Review Comments . 8-57

Tracking Review Progress . 8-58
Checking Coding Review Progress 8-58
Reviewing and Commenting Checks 8-59
Defining Custom Status . 8-61
Tracking Justified Checks in Procedural Entities View . . . 8-63
Commenting Code to Justify Known Checks 8-64

Importing and Exporting Review Comments 8-67
Reusing Review Comments . 8-67
Importing Review Comments from Previous
Verifications . 8-68

Exporting Review Comments to Spreadsheet 8-69
Viewing Checks and Comments Report 8-69

Generating Reports of Verification Results 8-71
Polyspace Report Generator Overview 8-71
Generating Verification Reports . 8-73
Running the Report Generator from the Command Line . . 8-75
Automatically Generating Verification Reports 8-76
Customizing Verification Reports . 8-76
Generating Excel Reports . 8-77

Using Polyspace Results . 8-83
Review Runtime Errors: Fix Red Errors 8-83
Red Checks Where Gray Checks were Expected 8-84
Using Range Information in Run-Time Checks
Perspective . 8-86

Using Pointer Information in Run-Time Checks
Perspective . 8-91

Why Review Dead Code Checks . 8-95
Reviewing Orange Checks . 8-97
Integration Bug Tracking . 8-97
How to Find Bugs in Unprotected Shared Data 8-98
Dataflow Verification . 8-99
Data and Coding Rules . 8-99
Potential Side Effect of a Red Error 8-100
Relationships Between Variables . 8-101

xiii

Managing Orange Checks

9
Understanding Orange Checks . 9-2
What is an Orange Check? . 9-2
Sources of Orange Checks . 9-6

Too Many Orange Checks? . 9-12
Do I Have Too Many Orange Checks? 9-12
How to Manage Orange Checks . 9-13

Reducing Orange Checks in Your Results 9-14
Overview: Reducing Orange Checks 9-14
Applying Coding Rules to Reduce Orange Checks 9-15
Considering Generated Code . 9-20
Improving Verification Precision . 9-21
Stubbing Parts of the Code Manually 9-26
Describing Multitasking Behavior Properly 9-28
Considering Contextual Verification 9-29

Reviewing Orange Checks . 9-30
Overview: Reviewing Orange Checks 9-30
Defining Your Review Methodology 9-30
Performing Selective Orange Review 9-32
Importing Review Comments from Previous
Verifications . 9-36

Commenting Code to Provide Information During
Review . 9-37

Working with Orange Checks Caused by Input Data 9-38
Performing an Exhaustive Orange Review 9-41

Automatically Testing Orange Code 9-45
Automatic Orange Tester Overview 9-45
Before Using the Automatic Orange Tester 9-48
Launching the Automatic Orange Tester 9-50
Reviewing the Test Results . 9-53
Refining Data Ranges . 9-57
Saving and Reusing Your Configuration 9-61
Exporting Data Ranges for Polyspace Verification 9-61
Configuring Compiler Options . 9-62
Technical Limitations . 9-63

xiv Contents

Day to Day Use

10
Polyspace In One Click Overview 10-2

Using Polyspace In One Click . 10-3
Polyspace In One Click Workflow . 10-3
Setting the Active Project . 10-3
Launching Verification . 10-5
Using the Taskbar Icon . 10-7

MISRA C Coding Rules Checker

11
PolyspaceMISRACCodingRules Checker Overview . . 11-2

Setting Up MISRA C Checking . 11-3
Setting MISRA C Checking Option 11-3
Creating a MISRA C Rules File . 11-5
Excluding Files from MISRA C Checking 11-7
Excluding All Include Folders from MISRA C Checking . . 11-8
Configuring Text and XML Editors 11-9
Commenting Code to Indicate Known Rule Violations 11-10

Viewing MISRA C Checker Results 11-11
Running a Verification with MISRA C Checking 11-11
Examining MISRA C Violations . 11-12
Commenting and Justifying MISRA C Violations 11-15
Opening Source Files from Coding Rules Perspective 11-17
Opening MISRA-C Report . 11-18
Generating Coding Rules Report . 11-19
Copying and Pasting Justifications 11-20

Coding Rules Assistant . 11-21
Polyspace Metrics and Coding Rules Assistant 11-21
Reviewing Assistant Coding Rules . 11-21

xv

Software Quality Objective Subsets of Coding Rules . . 11-26
SQO Subset 1 – Coding Rules with a Direct Impact on
Selectivity . 11-26

SQO Subset 2 – Coding Rules with an Indirect Impact on
Selectivity . 11-28

MISRA C Coding Rule Support . 11-31
MISRA C Rules Supported . 11-31
MISRA C Rules Not Checked . 11-64

Software Quality with Polyspace Metrics

12
About Polyspace Metrics . 12-2

Setting Up Verification to Generate Metrics 12-4
Specifying Automatic Verification . 12-4

Accessing Polyspace Metrics . 12-12
Monitoring Verification Progress . 12-13
Web Browser Support . 12-14

What You Can Do with Polyspace Metrics 12-15
Review Overall Progress . 12-15
Compare Project Versions . 12-19
Review Coding Rule Violations and Run-Time Checks . . . 12-19
Fix Defects . 12-24
Review Code Complexity . 12-26

Customizing Software Quality Objectives 12-27
About Customizing Software Quality Objectives 12-27
SQO Level 1 . 12-28
SQO Level 2 . 12-31
SQO Level 3 . 12-31
SQO Level 4 . 12-32
SQO Level 5 . 12-32
SQO Level 6 . 12-32
SQO Exhaustive . 12-33

xvi Contents

Coding Rules Set 1 . 12-33
Coding Rules Set 2 . 12-34
Run-Time Checks Set 1 . 12-36
Run-Time Checks Set 2 . 12-37
Run-Time Checks Set 3 . 12-38
Status Acronyms . 12-39

Tips for Administering Results Repository 12-40
Through the Polyspace Metrics Web Interface 12-40
Through Command Line . 12-41
Backup of Results Repository . 12-43

Using Polyspace Software in the Eclipse IDE

13
Verifying Code in the Eclipse IDE 13-2
Creating an Eclipse Project . 13-3
Setting Up Polyspace Verification with Eclipse Editor 13-4
Launching Verification from Eclipse Editor 13-5
Reviewing Verification Results from Eclipse Editor 13-6
Using the Polyspace Spooler . 13-6

Glossary

Index

xvii

xviii Contents

1

Introduction to Polyspace
Products

• “Introduction to Polyspace Products” on page 1-2

• “Polyspace Documentation” on page 1-14

1 Introduction to Polyspace® Products

Introduction to Polyspace Products

In this section...

“Overview of Polyspace Verification” on page 1-2

“The Value of Polyspace Verification” on page 1-2

“How Polyspace Verification Works” on page 1-4

“Product Components” on page 1-6

“Installing Polyspace Products” on page 1-13

“Related Products” on page 1-13

Overview of Polyspace Verification
Polyspace® products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed. Polyspace verification uses formal
methods not only to detect errors, but to prove mathematically that certain
classes of run-time errors do not exist.

To verify the source code, you set up verification parameters in a project, run
the verification, and review the results. A graphical user interface helps you
to efficiently review verification results. Results are color-coded:

• Green – Indicates code that never has an error.

• Red – Indicates code that always has an error.

• Gray – Indicates unreachable code.

• Orange – Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors and find the exact
location of an error in the source code. After you fix errors, you can easily run
the verification again.

The Value of Polyspace Verification
Polyspace verification can help you to:

• “Ensure Software Reliability” on page 1-3

1-2

Introduction to Polyspace® Products

• “Decrease Development Time” on page 1-3

• “Improve the Development Process” on page 1-4

Ensure Software Reliability
Polyspace software ensures the reliability of your C applications by proving
code correctness and identifying run-time errors. Using advanced verification
techniques, Polyspace software performs an exhaustive verification of your
source code.

Because Polyspace software verifies all possible executions of your code, it
can identify code that:

• Never has an error

• Always has an error

• Is unreachable

• Might have an error

With this information, you know how much of your code is free of run-time
errors, and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification
software to check that your code complies with MISRA C® standards.1

Decrease Development Time
Polyspace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process. However, using it during early
coding phases allows you to find errors when it is less costly to fix them.

You use Polyspace software to verify C source code before compile time. To
verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

1-3

1 Introduction to Polyspace® Products

Color-coding of results helps you to quickly identify errors. You will spend
less time debugging because you can see the exact location of an error in the
source code. After you fix errors, you can easily run the verification again.

Using Polyspace verification software helps you to use your time effectively.
Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

Reviewing code that might have errors (orange code) can be time-consuming,
but Polyspace software helps you with the review process. You can use filters
to focus on certain types of errors or you can allow the software to identify the
code that you should review.

Improve the Development Process
Polyspace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

Polyspace verification software supports code verification throughout the
development process:

• An individual developer can find and fix run-time errors during the initial
coding phase.

• Quality assurance engineers can check overall reliability of an application.

• Managers can monitor application reliability by generating reports from
the verification results.

How Polyspace Verification Works
Polyspace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program
without actually executing it. This differs significantly from other techniques,
such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties obtained in the
Polyspace verification are true for all executions of the software.

1-4

Introduction to Polyspace® Products

What is Static Verification
Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. However, most
Static Verification tools only verify the complexity of the software, in a search
for constructs which may be potentially dangerous. Polyspace verification
provides deep-level verification identifying almost all runtime errors and
possible access conflicts on global shared data.

Polyspace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable ’i’ never overflows the range of ’tab’ a traditional
approach would be to enumerate each possible value of ’i’. One thousand
checks would be needed.

Using the static verification approach, the variable ’i’ is modelled by its
variation domain. For instance the model of ’i’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that ’i’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of ’i’ is smaller than the range of ’tab’. Only one check is required
to establish that - and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

1-5

1 Introduction to Polyspace® Products

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that Polyspace
verification works by performing upper approximations. In other words, the
computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no runtime error
(RTE) item to be checked can be missed by Polyspace verification.

Product Components

• “Polyspace Products for C” on page 1-6

• “Polyspace Verification Environment” on page 1-6

• “Other Polyspace Components” on page 1-11

Polyspace Products for C
The Polyspace products for verifying C code are combined with the Polyspace
products for verifying C++ code. These products are:

• Polyspace® Client™ for C/C++

• Polyspace® Server™ for C/C++

Polyspace Client for C/C++ software is the management and visualization tool
of Polyspace products. You use it to submit jobs for execution by the Polyspace
Server, and to review verification results.

Polyspace Server for C/C++ software is the computational engine of Polyspace
products. You use it to run jobs posted by Polyspace clients, and to manage
multiple servers and queues.

Polyspace Verification Environment
The Polyspace verification environment (PVE) is the graphical user interface
of the Polyspace Client for C/C++ software. You use the Polyspace verification
environment to create Polyspace projects, launch verifications, and review
verification results.

The Polyspace verification environment consists of three perspectives:

1-6

Introduction to Polyspace® Products

• “Project Manager Perspective” on page 1-7

• “Coding Rules Perspective” on page 1-9

• “Run-Time Checks Perspective” on page 1-10

Project Manager Perspective. The Project Manager perspective allows you
to create projects, set verification parameters, and launch verifications.

1-7

1 Introduction to Polyspace® Products

��������	��
�����
����������
�

�	������������������

������������������

�����
�
��������������

������������	��
����

�	�����

�
�������	�����

1-8

Introduction to Polyspace® Products

For information on using the Project Manager perspective, see Chapter 3,
“Setting Up a Verification Project”.

Coding Rules Perspective. The Coding Rules perspective allows you to
review results from the Polyspace coding rules checker, to ensure compliance
with established coding standards.

For information on using the Coding Rules perspective, see Chapter 11,
“MISRA C Coding Rules Checker”.

1-9

1 Introduction to Polyspace® Products

Run-Time Checks Perspective. The Run-Time Checks perspective allows
you to review verification results, comment individual checks, and track
review progress.

���������
�����������������
���

������
����

��������
������

�
��
����
����

��
!��
"�����

1-10

Introduction to Polyspace® Products

For information on using the Run-Time Checks perspective, see Chapter
8, “Reviewing Verification Results”.

Other Polyspace Components
In addition to the Polyspace verification environment, Polyspace products
provide several other components to manage verifications, improve
productivity, and track software quality. These components include:

• Polyspace Queue Manager Interface (Spooler)

• Polyspace in One Click

• Polyspace Metrics Web Interface

Polyspace Queue Manager Interface (Polyspace Spooler). The
Polyspace Queue Manager (also called the Polyspace Spooler) is the graphical
user interface of the Polyspace Server for C/C++ software. You use the
Polyspace Queue Manager Interface to move jobs within the queue, remove
jobs, monitor the progress of individual verifications, and download results.

For information on using the Polyspace Queue Manager Interface, see
Chapter 6, “Running a Verification”.

Polyspace in One Click. Polyspace in One Click is a convenient way to
verify multiple files using the same set of options.

1-11

1 Introduction to Polyspace® Products

After creating a project with the options that you want, you can use Polyspace
in One Click to designate that project as the active project, and then send
source files to Polyspace software for verification with a single mouse click.

For information on using Polyspace in One Click, see Chapter 10, “Day to
Day Use ”.

Polyspace Metrics Web Interface. Polyspace Metrics is a web-based
tool for software development managers, quality assurance engineers, and
software developers. Polyspace Metrics allows you to evaluate software
quality metrics, and monitor changes in code metrics, coding rule violations,
and run-time checks through the lifecycle of a project.

For information on using Polyspace Metrics, see Chapter 12, “Software
Quality with Polyspace Metrics”.

1-12

Introduction to Polyspace® Products

Installing Polyspace Products
For information on installing and licensing Polyspace products, refer to the
Polyspace Installation Guide.

Related Products

• “Polyspace Products for Verifying C++ Code” on page 1-13

• “Polyspace Products for Verifying Ada Code” on page 1-13

• “Polyspace Products for Linking to Models” on page 1-13

Polyspace Products for Verifying C++ Code
For information about Polyspace products that verify C++ code, see the
following:

http://www.mathworks.com/products/polyspaceclientc/

http://www.mathworks.com/products/polyspaceserverc/

Polyspace Products for Verifying Ada Code
For information about Polyspace products that verify Ada code, see the
following:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

Polyspace Products for Linking to Models
For information about Polyspace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

1-13

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to Polyspace® Products

Polyspace Documentation

In this section...

“About this Guide” on page 1-14

“Related Documentation” on page 1-14

About this Guide
This document describes how to use Polyspace software to verify C code, and
provides detailed procedures for common tasks. It covers both Polyspace
Client for C/C++ and Polyspace Server for C/C++ products.

This guide is intended for both novice and experienced users.

Related Documentation
In addition to this guide, the following related documents are shipped with
the software:

• Polyspace Products for C Getting Started Guide – Provides a basic
workflow and step-by-step procedures for verifying C code using Polyspace
software, to help you quickly learn how to use the software.

• Polyspace Products for C Reference – Provides detailed descriptions of
all Polyspace options, as well as all checks reported in the Polyspace results.

• Polyspace Installation Guide – Describes how to install and license
Polyspace products.

• Polyspace Release Notes – Describes new features, bug fixes, and
upgrade issues.

You can access these guides from the Help menu, or by or clicking the Help
icon in the Polyspace window.

To access the online documentation for Polyspace products, go to:

/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

1-14

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

Polyspace® Documentation

MathWorks Online
For additional information and support, see:

www.mathworks.com/products/polyspace

1-15

http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

1 Introduction to Polyspace® Products

1-16

2

How to Use Polyspace
Software

• “Polyspace Verification and the Software Development Cycle” on page 2-2

• “Implementing a Process for Polyspace Verification” on page 2-4

• “Sample Workflows for Polyspace Verification” on page 2-13

2 How to Use Polyspace® Software

Polyspace Verification and the Software Development
Cycle

In this section...

“Software Quality and Productivity” on page 2-2

“Best Practices for Verification Workflow” on page 2-3

Software Quality and Productivity
The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are always three
related variables: cost, quality, and time.

#�
����

���� ����

Changing the requirements for one of these variables always impacts the
other two.

Generally, the criticality of your application determines the balance between
these three variables – your quality model. With classical testing processes,
development teams generally try to achieve their quality model by testing
all modules in an application until each meets the required quality level.
Unfortunately, this process often ends before quality objectives are met,
because the available time or budget has been exhausted.

Polyspace verification allows a different process. Polyspace verification can
support both productivity improvement and quality improvement at the same
time, although there is always a balance between these goals.

To achieve maximum quality and productivity, however, you cannot simply
perform code verification at the end of the development process. You must
integrate verification into your development process, in a way that respects
time and cost restrictions.

2-2

Polyspace® Verification and the Software Development Cycle

This chapter describes how to integrate Polyspace verification into your
software development cycle. It explains both how to use Polyspace verification
in your current development process, and how to change your process to get
more out of verification.

Best Practices for Verification Workflow
Polyspace verification can be used throughout the software development cycle.
However, to maximize both quality and productivity, the most efficient time
to use it is early in the development cycle.

���
�����������

$���
�
�����������

�������������

��%���������

&�������
������
�

�����

����
"�
�����

����
 ������
����

Polyspace® Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is
written, to check coding rules and quickly identify any obvious defects. Once
the code is stable, you verify it again before module/unit testing, with more
stringent verification and review criteria.

Using verification early in the development cycle improves both quality and
productivity, because it allows you to find and manage defects soon after the
code is written. This saves time because each user is familiar with their own
code, and can quickly determine why code cannot be proven safe. In addition,
defects are cheaper to fix at this stage, since they can be addressed before the
code is integrated into a larger system.

2-3

2 How to Use Polyspace® Software

Implementing a Process for Polyspace Verification

In this section...

“Overview of the Polyspace Process” on page 2-4

“Defining Quality Objectives” on page 2-5

“Defining a Verification Process to Meet Your Objectives” on page 2-11

“Applying Your Verification Process to Assess Code Quality” on page 2-12

“Improving Your Verification Process” on page 2-12

Overview of the Polyspace Process
Polyspace verification cannot magically produce quality code at the end of
the development process. Verification is a tool that helps you measure the
quality of your code, identify issues, and ultimately achieve your own quality
goals. To do this, however, you must integrate Polyspace verification into
your development process.

To successfully implement polyspace verification within your development
process, you must perform each of the following steps:

1 Define your quality objectives.

2 Define a process to match your quality objectives.

3 Apply the process to assess the quality of your code.

4 Improve the process.

2-4

Implementing a Process for Polyspace® Verification

Defining Quality Objectives
Before you can verify whether your code meets your quality goals, you must
define those goals. Therefore, the first step in implementing a verification
process is to define your quality objectives.

This process involves:

• “Choosing Robustness or Contextual Verification” on page 2-5

• “Choosing Coding Rules” on page 2-6

• “Choosing Strict or Permissive Verification Objectives” on page 2-7

• “Defining Software Quality Levels” on page 2-8

Choosing Robustness or Contextual Verification
Before using Polyspace products to verify your code, you must decide what
type of software verification you want to perform. There are two approaches
to code verification that result in slightly different workflows:

• Robustness Verification – Prove software works under all conditions.

• Contextual Verification – Prove software works under normal working
conditions.

Note Some verification processes may incorporate both robustness and
contextual verification. For example, developers may perform robustness
verification on individual files early in the development cycle, while writing
the code. Later, the team may perform contextual verification on larger
software components.

Robustness Verification. Robustness verification proves that the software
works under all conditions, including “abnormal” conditions for which it was
not designed. This can be thought of as “worst case” verification.

By default, Polyspace software assumes you want to perform robustness
verification. In a robustness verification, Polyspace software:

• Assumes function inputs are full range

2-5

2 How to Use Polyspace® Software

• Initializes global variables to full range

• Automatically stubs missing functions

While this approach ensures that the software works under all conditions,
it can lead to orange checks (unproven code) in your results. You must then
manually inspect these orange checks in accordance with your software
quality objectives.

Contextual Verification. Contextual verification proves that the software
works under predefined working conditions. This limits the scope of the
verification to specific variable ranges, and verifies the code within these
ranges.

When performing contextual verification, you use Polyspace options to reduce
the number of orange checks. For example, you can:

• Use Data Range Specifications (DRS) to specify the ranges for your
variables, thereby limiting the verification to these cases. For more
information, see “Specifying Data Ranges for Variables and Functions
(Contextual Verification)” on page 4-34.

• Create a detailed main program to model the call sequence, instead of
using the default main generator. For more information, see “Verifying an
Application Without a “Main”” on page 4-30.

• Provide manual stubs that emulate the behavior of missing functions,
instead of using the default automatic stubs. For more information, see
“Stubbing” on page 5-2.

Choosing Coding Rules
Coding rules are one of the most efficient means to improve both the quality
of your code, and the quality of your verification results.

If your development team observes certain coding rules, the number of
orange checks (unproven code) in your verification results will be reduced
substantially. This means that there is less to review, and that the remaining
checks are more likely to represent actual bugs. This can make the cost of bug
detection much lower.

2-6

Implementing a Process for Polyspace® Verification

Polyspace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

For more information, see Chapter 11, “MISRA C Coding Rules Checker”.

Choosing Strict or Permissive Verification Objectives
While defining the quality objectives for your application, you should
determine which of these options you want to use.

Options that make verification more strict include:

• Detect overflows on signed and unsigned (-scalar-overflow-checks)
– Verification is more strict with overflowing computations on unsigned
integers.

• Do not consider all global variables to be initialized
(-no-def-init-glob) – Verification treats all global variables as
non-initialized, therefore causing a red error if they are read before they
are written to.

• Give all warnings (-wall) – Specifies that all C compliance warnings are
written to the log file during compilation.

• Strict (-strict) – Specifies strict verification mode, which is equivalent to
using the -wall and -no-automatic-stubbing options simultaneously.

Options that make verification more permissive include:

• Enable pointer arithmetic out of bounds of fields
(-allow-ptr-arith-on-struct) – Enables navigation within a structure
or union from one field to another.

• Allow negative operand for left shifts
(-allow-negative-operand-in-shift) – Verification allows a shift
operation on a negative number.

• Ignore overflowing computations on constants
(-ignore-constant-overflows) – Verification is permissive
with overflowing computations on constants.

2-7

2 How to Use Polyspace® Software

• Allow non int types for bitfields (-allow-non-int-bitfield) – Allows
you to define types of bitfields other than signed or unsigned int.

• Allow undefined global variables (-allow-undef-variables) –
Verification does not stop due to errors caused by undefined global
variables.

• Allow anonymous union/structure fields (-allow-unnamed-fields)
– Verification does not stop due to errors caused by unnamed fields in
structures.

• Kiel/IAR support (-dialect) – Verification allows syntax associated with
the IAR and Keil dialects.

For more information on these options, see “Option Descriptions” in the
Polyspace Products for C Reference.

Defining Software Quality Levels
The software quality level you define determines which Polyspace options you
use, and which results you must review.

You define the quality levels appropriate for your application, from level QL-1
(lowest) to level QL-4 (highest). Each quality level consists of a set of software
quality criteria that represent a certain quality threshold. For example:

Software Quality Levels

Software Quality LevelsCriteria

QL1 QL2 QL3 QL4

Document static information X X X X

Enforce coding rules with direct impact on
selectivity

X X X X

Review all red checks X X X X

Review all gray checks X X X X

Review first criteria level for orange
checks

X X X

2-8

Implementing a Process for Polyspace® Verification

Software Quality Levels (Continued)

Software Quality LevelsCriteria

QL1 QL2 QL3 QL4

Review second criteria level for orange
checks

X X

Enforce coding rules with indirect impact
on selectivity

X X

Perform dataflow analysis X X

Review third criteria level for orange
checks

X

You define the quality criteria appropriate for your application. In the
example above, the quality criteria include:

• Static Information – Includes information about the application
architecture, the structure of each module, and all files. This information
must be documented to ensure that your application is fully verified.

• Coding rules – Polyspace software can check that your code complies
with specified coding rules. The section “Applying Coding Rules to Reduce
Orange Checks” on page 9-15 defines two sets of coding rules – a first set
with direct impact on the selectivity of the verification, and a second set
with indirect impact on selectivity.

• Red checks – Represent errors that occur every time the code is executed.

• Gray checks – Represent unreachable code.

• Orange checks – Indicate unproven code, meaning a run-time error may
occur. Polyspace software allows you to define three criteria levels for
reviewing orange checks in the Run-Time Checks perspective. For more
information, see “Reviewing Results in Assistant Mode” on page 8-35.

• Dataflow analysis – Identifies errors such as non-initialized variables and
variables that are written but never read. This can include inspection of:

- Application call tree

- Read/write accesses to global variables

2-9

2 How to Use Polyspace® Software

- Shared variables and their associated concurrent access protection

2-10

Implementing a Process for Polyspace® Verification

Defining a Verification Process to Meet Your
Objectives
Once you have defined your quality objectives, you must define a process that
allows you to meet those objectives. Defining the process involves actions both
within and outside Polyspace software.

These actions include:

• Communicating coding standards (coding rules) to your development team.

• Setting Polyspace Analysis options to match your quality objectives. For
more information, see “Creating a Project” on page 3-2.

• Setting review criteria in the Run-Time Checks perspective to ensure
results are reviewed consistently. For more information, see “Defining a
Custom Methodology” on page 8-41.

2-11

2 How to Use Polyspace® Software

Applying Your Verification Process to Assess Code
Quality
Once you have defined a process that meets your quality objectives, it is up to
your development and testing teams to apply it consistently to all software
components.

This process includes:

1 Launching Polyspace verification on each software component as it is
written. See “Using Polyspace In One Click” on page 10-3.

2 Reviewing verification results consistently. See “Reviewing Results in
Assistant Mode” on page 8-35.

3 Saving review comments for each component, so they are available
for future review. See “Importing Review Comments from Previous
Verifications” on page 9-36.

4 Performing additional verifications on each component, as defined by your
quality objectives.

Improving Your Verification Process
Once you review initial verification results, you can assess both the overall
quality of your code, and how well the process meets your requirements for
software quality, development time, and cost restrictions.

Based on these factors, you may want to take actions to modify your process.
These actions may include:

• Reassessing your quality objectives.

• Changing your development process to produce code that is easier to verify.

• Changing Polyspace analysis options to improve the precision of the
verification.

• Changing Polyspace options to change how verification results are reported.

For more information, see Chapter 9, “Managing Orange Checks”.

2-12

Sample Workflows for Polyspace® Verification

Sample Workflows for Polyspace Verification

In this section...

“Overview of Verification Workflows” on page 2-13

“Software Developers and Testers – Standard Development Process” on
page 2-14

“Software Developers and Testers – Rigorous Development Process” on
page 2-17

“Quality Engineers – Code Acceptance Criteria” on page 2-21

“Quality Engineers – Certification/Qualification” on page 2-24

“Model-Based Design Users — Verifying Generated Code” on page 2-25

“Project Managers — Integrating Polyspace Verification with Configuration
Management Tools” on page 2-29

Overview of Verification Workflows
Polyspace verification supports two objectives at the same time:

• Reducing the cost of testing and validation

• Improving software quality

You can use Polyspace verification in different ways depending on your
development context and quality model. The primary difference being how
you exploit verification results.

This section provides sample workflows that show how to use Polyspace
verification in a variety of development contexts.

2-13

2 How to Use Polyspace® Software

Software Developers and Testers – Standard
Development Process

User Description
This workflow applies to software developers and test groups using a standard
development process. Before implementing Polyspace verification, these users
fit the following criteria:

• In Ada, no unit test tools or coverage tools are used – functional tests are
performed just after coding.

• In C, either no coding rules are used, or rules are not followed consistently.

Quality Objectives
The main goal of Polyspace verification is to improve productivity while
maintaining or improving software quality. Verification helps developers
and testers find and fix bugs more quickly than other processes. It also
improves software quality by identifying bugs that otherwise might remain
in the software.

In this process, the goal is not to completely prove the absence of errors. The
goal is to deliver code of equal or better quality that other processes, while
optimizing productivity to ensure a predictable time frame with minimal
delays and costs.

Verification Workflow
This process involves file-by-file verification immediately after coding, and
again just before functional testing.

2-14

Sample Workflows for Polyspace® Verification

���
�����������

$���
�
�����������

�������������

��%���������

&�������
������
�

�����

����� ������
����

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform robustness
verification, using default Polyspace options.

Note This means that verification uses the automatically generated
“main” function. This main will call all unused procedures and functions
with full range parameters.

2 Each developer performs file-by-file verification as they write code, and
reviews verification results.

3 The developer fixes all red errors and examines gray code identified by
the verification.

4 The developer repeats steps 2 and 3 as needed, while completing the code.

5 Once a developer considers a file complete, they perform a final verification.

6 The developer fixes any red errors, examines gray code, and performs
a selective orange review.

2-15

2 How to Use Polyspace® Software

Note The goal of the selective orange review is to find as many bugs as
possible within a limited period of time.

Using this approach, it is possible that some bugs may remain in unchecked
oranges. However, the verification process represents a significant
improvement from other testing methods.

Costs and Benefits
When using verification to detect bugs:

• Red and gray checks – Reviewing red and gray checks provides a quick
method to identify real run-time errors in the code.

• Orange checks – Selective orange review provides a method to identify
potential run-time errors as quickly as possible. The time required to
find one bug varies from 5 minutes to 1 hour, and is typically around 30
minutes. This represents an average of two minutes per orange check
review, and a total of 20 orange checks per package in Ada and 60 orange
checks per file in C.

Disadvantages to this approach:

• Number of orange checks – If you do not use coding rules, your
verification results will contain more orange checks.

• Unreviewed orange checks – Some bugs may remain in unchecked
oranges.

2-16

Sample Workflows for Polyspace® Verification

Software Developers and Testers – Rigorous
Development Process

User Description
This workflow applies to software developers and test engineers working
within development groups. These users are often developing software for
embedded systems, and typically use coding rules.

These users typically want to find bugs early in the development cycle using a
tool that is fast and iterative.

Quality Objectives
The goal of Polyspace verification is to improve software quality with equal or
increased productivity.

Verification can prove the absence of runtime errors, while helping developers
and testers find and fix any bugs more quickly than other processes.

Verification Workflow

This process involves both code analysis and code verification during the
coding phase, and thorough review of verification results before module
testing. It may also involve integration analysis before integration testing.

2-17

2 How to Use Polyspace® Software

���	��
����

���'�����

(�����

����

��)��
�
��%���������

�
����������
����

������
����
�

*!+���
����

"		���
����
����
�

������	�����"����
��

�����
���������	�����"�������

�����"�
����� ����� ������
����

 ������
�������
��
����,,�����

�������������

$���
�
�����������

Workflow for Code Verification

Note Solid arrows in the figure indicate the progression of software
development activities.

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform contextual
verification. This involves:

• Using Data Range Specifications (DRS) to define initialization ranges
for input data. For example, if a variable “x” is read by functions in
the file, and if x can be initialized to any value between 1 and 10, this
information should be included in the DRS file.

• Creates a “main” program to model call sequence, instead of using the
automatically generated main.

• Sets options to check the properties of some output variables. For
example, if a variable “y” is returned by a function in the file and should
always be returned with a value in the range 1 to 100, then Polyspace
can flag instances where that range of values might be breached.

2-18

Sample Workflows for Polyspace® Verification

2 The project leader configures the project to check appropriate coding rules.

3 Each developer performs file-by-file verification as they write code, and
reviews both coding rule violations and verification results.

4 The developer fixes any coding rule violations, fixes all red errors,
examines gray code, and performs a selective orange review.

5 The developer repeats steps 2 and 3 as needed, while completing the code.

6 Once a developer considers a file complete, they perform a final verification.

7 The developer or tester performs an exhaustive orange review on the
remaining orange checks.

Note The goal of the exhaustive orange review is to examine all orange
checks that were not reviewed as part of previous reviews. This is possible
when using coding rules because the total number of orange checks is
reduced, and the remaining orange checks are likely to reveal problems
with the code.

Optionally, an additional verification can be performed during the integration
phase. The purpose of this additional verification is to track integration bugs,
and review:

• Red and gray integration checks;

• The remaining orange checks with a selective review: Integration bug
tracking.

Costs and Benefits
With this approach, Polyspace verification typically provides the following
benefits:

• Fewer orange checks in the verification results (improved selectivity). The
number of orange checks is typically reduced to 3–5 per file, yielding an
average of 1 bug. Often, several of the orange checks represent the same
bug.

2-19

2 How to Use Polyspace® Software

• Fewer gray checks in the verification results.

• Typically, each file requires two verifications before it can be checked-in to
the configuration management system.

• The average verification time is about 15 minutes.

Note If the development process includes data rules that determine the
data flow design, the benefits might be greater. Using data rules reduces
the potential of verification finding integration bugs.

If performing the optional verification to find integration bugs, you may see
the following results. On a typical 50,000 line project:

• A selective orange review may reveal one integration bug per hour
of code review.

• Selective orange review takes about 6 hours to complete. This is long
enough to review orange checks throughout the whole application. This
represents a step towards an exhaustive orange check review. However,
spending more time is unlikely to be efficient, and will not guarantee that
no bugs remain.

• An exhaustive orange review would take between 4 and 6 days, assuming
that 50,000 lines of code contains approximately 400–800 orange checks.
Exhaustive orange review is typically recommended only for high-integrity
code, where the consequences of a potential error justify the cost of the
review.

2-20

Sample Workflows for Polyspace® Verification

Quality Engineers – Code Acceptance Criteria

User Description
This workflow applies to quality engineers who work outside of software
development groups, and are responsible for independent verification of
software quality and adherence to standards.

These users generally receive code late in the development cycle, and may
even be verifying code that is written by outside suppliers or other external
companies. They are concerned with not just detecting bugs, but measuring
quality over time, and developing processes to measure, control, and improve
product quality going forward.

Quality Objectives
The main goal of Polyspace verification is to control and evaluate the safety
of an application.

The criteria used to evaluate code can vary widely depending on the criticality
of the application, from no red errors to exhaustive oranges review. Typically,
these criteria become increasingly stringent as a project advances from early,
to intermediate, and eventually to final delivery.

For more information on defining these criteria, see “Defining Software
Quality Levels” on page 2-8.

Verification Workflow
This process usually involves both code analysis and code verification before
validation phase, and thorough review of verification results based on defined
quality objectives.

2-21

2 How to Use Polyspace® Software

���
�����������

$���
�
�����������

�������������

��%���������

&�������
������
�

�����

����� ������
����

��������
	
���
���

������������

��������������

Note Verification is often performed multiple times, as multiple versions of
the software are delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality objectives for the code to be
written, including specific quality levels for each version of the code to be
delivered (first, intermediate, or final delivery) For more information, see
“Defining Quality Objectives” on page 2-5.

2 Development group writes code according to established standards.

3 Development group delivers software to the quality engineering group.

4 The project leader configures the Polyspace project to meet the defined
quality objectives, as described in “Defining a Verification Process to Meet
Your Objectives” on page 2-11.

5 Quality engineers perform verification on the code.

6 Quality engineers review all red errors, gray code, and the number of
orange checks defined in the process.

2-22

Sample Workflows for Polyspace® Verification

Note The number of orange checks reviewed often depends on the version
of software being tested (first, intermediate, or final delivery). This can be
defined by quality level (see “Defining Software Quality Levels” on page
2-8).

7 Quality engineers create reports documenting the results of the verification,
and communicate those results to the supplier.

8 Quality engineers repeat steps 5–7 for each version of the code delivered.

Costs and Benefits
The benefits of code verification at this stage are the same as with other
verification processes, but the cost of correcting faults is higher, because
verification takes place late in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the
cost of doing so can be high. If you want to review all orange checks at this
phase, it is important to use development and verification processes that
minimize the number of orange checks. This includes:

• Developing code using strict coding and data rules.

• Providing accurate manual stubs for all unresolved function calls.

• Using DRS to provide accurate data ranges for all input variables.

Taking these steps will minimize the number of orange checks reported by the
verification, and make it likely that any remaining orange checks represent
true issues with the software.

2-23

2 How to Use Polyspace® Software

Quality Engineers – Certification/Qualification

User Description
This workflow applies to quality engineers who work with applications
requiring outside quality certification, such as IEC 61508 certification or
DO-178B qualification.

These users must perform a set of activities to meet certification requirements.

For information on using Polyspace products within an IEC 61508 certification
environment, see the IEC Certification Kit: Verification of C and C++ Code
Using Polyspace Products.

For information on using Polyspace products within an DO-178B qualification
environment, see the DO Qualification Kit: Polyspace Client/Server for
C/C++ Tool Qualification Plan.

2-24

Sample Workflows for Polyspace® Verification

Model-Based Design Users — Verifying Generated
Code

User Description
This workflow applies to users who have adopted model-based design to
generate code for embedded application software.

These users generally use Polyspace software in combination with several
other MathWorks® products, including Simulink®, Embedded Coder™ , and
Simulink® Design Verifier™ products. In many cases, these customers
combine application components that are hand-written code with those
created using generated code.

Quality Objectives
The goal of Polyspace verification is to improve the quality of the software by
identifying implementation issues in the code, and ensuring the code is both
semantically and logically correct.

Polyspace verification allows you to find run time errors:

• In hand-coded portions within the generated code

• In the model used for production code generation

• In the integration of hand-written and generated code

2-25

2 How to Use Polyspace® Software

Verification Workflow
The workflow is different for hand-written code, generated code, and mixed
code. Polyspace products can perform code verification as part of any of these
workflows. The following figure shows a suggested verification workflow for
hand-written and mixed code.

-)����
!��
�	������
����

��)��
�
��%���������

���	��
����

���'�����

����
.����
����

��)��
�
��%���������

�
����������
����

.����
���
����

������/���
��������
.����
����

������
����
�

*!+���
����

"		���
����
����
�

�������

������	�����"����
��

�����
���������	�����"�������

�����"�
����� ����� ������
����

�����"�
����� ����� ������
����

 ������
�������
��
����,,�����

�������������

$���
�
�����������

Workflow for Verification of Generated and Mixed Code

Note Solid arrows in the figure indicate the progression of software
development activities.

2-26

Sample Workflows for Polyspace® Verification

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to meet defined quality
objectives.

2 Developers write hand-coded sections of the application.

3 Developers or testers perform Polyspace verification on any hand-coded
sections within the generated code, and review verification results
according to the established quality objectives.

4 Developers create Simulink model based on requirements.

5 Developers validate model to ensure it is logically correct (using tools
such as Simulink Model Advisor, and the Simulink® Verification and
Validation™ and Simulink Design Verifier products).

6 Developers generate code from the model.

7 Developers or testers perform Polyspace verification on the entire
software component, including both hand-written and generated code.

8 Developers or testers review verification results according to the
established quality objectives.

Note The Polyspace Model Link™ SL product allows you to quickly track
any issues identified by the verification back to the appropriate block in
the Simulink model.

2-27

2 How to Use Polyspace® Software

Costs and Benefits
Simulink Design Verifier verification can identify errors in textual designs
or executable models that are not identified by other methods. The following
table shows how errors in textual designs or executable models can appear
in the resulting code.

Examples of Common Run-Time Errors

Type of Error Design or Model Errors Code Errors

Arithmetic
errors

• Incorrect Scaling

• Unknown calibrations

• Untested data ranges

• Overflows/Underflows

• Division by zero

• Square root of negative numbers

Memory
corruption

• Incorrect array specification in
state machines

• Incorrect legacy code (look-up
tables)

• Out of bound array indexes

• Pointer arithmetic

Data
truncation

• Unexpected data flow • Overflows/Underflows

• Wrap-around

Logic errors • Unreachable states

• Incorrect Transitions

• Non initialized data

• Dead code

2-28

Sample Workflows for Polyspace® Verification

Project Managers — Integrating Polyspace
Verification with Configuration Management Tools

User Description
This workflow applies to project managers responsible for establishing
check-in criteria for code at different development stages.

Quality Objectives
The goal of Polyspace verification is to test that code meets established quality
criteria before being checked in at each development stage.

Verification Workflow
The verification workflow consists of the following steps:

1 Project manager defines quality objectives, including individual quality
levels for each stage of the development cycle.

2 Project leader configures a Polyspace project to meet quality objectives.

3 Developers or testers run verification at the following stages:

• Daily check-in — On the files currently under development.
Compilation must complete without the permissive option.

• Pre-unit test check-in— On the files currently under development.

• Pre-integration test check-in— On the whole project, ensuring that
compilation can complete without the permissive option. This stage
differs from daily check-in because link errors are highlighted.

• Pre-build for integration test check-in— On the whole project, with
all multitasking aspects accounted for as appropriate.

• Pre-peer review check-in — On the whole project, with all
multitasking aspects accounted for as appropriate.

4 Developers or testers review verification results for each check-in activity
to ensure the code meets the appropriate quality level. For example, the
transition criterion could be: “No bug found within 20 minutes of selective
orange review”

2-29

2 How to Use Polyspace® Software

2-30

3

Setting Up a Verification
Project

• “Creating a Project” on page 3-2

• “Specifying Options to Match Your Quality Objectives” on page 3-23

• “Setting Up Project to Check Coding Rules” on page 3-30

• “Setting up Project to Automatically Test Orange Code” on page 3-32

• “Setting Up Project to Generate Metrics” on page 3-34

3 Setting Up a Verification Project

Creating a Project

In this section...

“What Is a Project?” on page 3-2

“Project Folders” on page 3-3

“Opening Polyspace Verification Environment” on page 3-3

“Creating New Projects” on page 3-5

“Opening Existing Projects” on page 3-8

“Closing Existing Projects” on page 3-10

“Specifying Source Files” on page 3-10

“Specifying Include Folders” on page 3-12

“Managing Include File Sequence” on page 3-14

“Creating Multiple Verifications” on page 3-15

“Creating Multiple Analysis Option Configurations” on page 3-16

“Changing Project Location” on page 3-18

“Specifying Target Environment” on page 3-19

“Specifying Analysis Options” on page 3-19

“Configuring Text and XML Editors” on page 3-20

“Saving the Project” on page 3-22

What Is a Project?
In Polyspace software, a project is a named set of parameters for verification
of your software project’s source files. A project includes:

• Source files

• Include folders

• One or more configurations, specifying a set of analysis options

• One or more verifications, each of which include:

- Source (specific versions of source files used in the verification)

3-2

Creating a Project

- Configuration (specific set of analysis options used for the verification)

- Verification results

You create and modify a project using the Project Manager perspective.

Project Folders
Before you begin verifying your code with Polyspace software, you must know
the location of your source files and include files. You must also know where
you want to store the verification results.

To simplify the location of your files, you may want to create a project folder,
and then in that folder, create separate folders for the source files, include
files, and results. For example:

polyspace_project/

• sources

• includes

• results

Opening Polyspace Verification Environment
You use the Polyspace verification environment to create projects, start
verifications, and review verification results.

To open the Polyspace verification environment:

1 Double-click the Polyspace icon (Windows® systems).

On a Linux® or UNIX® system, use the following command:

$POLYSPACE/PVE/bin/polyspace

The Polyspace Verification Environment opens.

3-3

3 Setting Up a Verification Project

��������	��
�����
����������
�

�	������������������

������������������

�����
�
��������������

������������	��
����

�	�����

�
�������	�����

3-4

Creating a Project

By default, the Polyspace Verification Environment displays the Project
Manager perspective. The Project Manager perspective has three main panes.

Use this
section...

For...

Project Browser
(upper-left)

Specifying:
• Source files

• Include folders

• Results folder

Configuration
(upper-right)

Specifying analysis options

Output
(lower-right)

Monitoring the progress of a verification, and viewing
status, log messages, and general verification statistics.

You can resize or hide any of these panes.

Creating New Projects
The Polyspace verification environment can manage multiple projects
simultaneously. When you create a new project or open an existing project,
the project is added to the Project Browser tree.

To create a new project:

1 Select File > New Project.

The Polyspace Project – Properties dialog box opens:

3-5

3 Setting Up a Verification Project

2 In the Project name field, enter a name for your project.

3 If you want to specify a location for your project, clear the Default location
check box, and enter a Location for your project.

4 In the Project language section, select C.

5 Click Next.

The Polyspace Project – Add Source Files and Include Folders dialog box
opens.

3-6

Creating a Project

6 The project folder Location you specified in step 3 should appear in Look
in. If it does not, navigate to that folder.

7 Select the source files you want to include in the project, then click Add
Source.

The source files appear in the Source tree for your project.

8 Select the Include folders you want to include in the project, then click
Add Include.

The Include folders appear in the Include tree for your project.

9 Click Finish.

The new project opens in the Polyspace verification environment.

3-7

3 Setting Up a Verification Project

Opening Existing Projects
The Polyspace verification environment can manage multiple projects
simultaneously. When you create a new project or open an existing project,
the project is added to the Project Browser tree.

3-8

Creating a Project

To open an existing project:

1 Select File > Open Project.

The Please select a file dialog box appears.

2 Select the project you want to open, then click OK.

The selected project opens in the Project Manager perspective.

3-9

3 Setting Up a Verification Project

Closing Existing Projects
The Polyspace verification environment can manage multiple projects
simultaneously. When you create a new project or open an existing project,
the project is added to the Project Browser tree. To remove a project from the
Project Browser tree, you must close the project.

To close a project:

1 In the Project Browser, select the project you want to close.

2 Right-click the project, then select Close Active Project.

The project is closed and removed from the Project Browser tree.

Specifying Source Files
To specify the source files for your project:

1 In the Project Browser, select the Source folder.

2 Click the Add source icon in the upper left the Project Browser.

The Polyspace Project – Add Source Files and Include Folders dialog box
opens.

3-10

Creating a Project

3 In the Look in field, navigate to the folder containing your source files.

4 Select the source files you want to include in the project, then click Add
Source.

The source files àppear in the Source tree for your project.

5 Click Finish to apply the changes and close the dialog box.

The source files you selected appear in the Project Browser.

3-11

3 Setting Up a Verification Project

Specifying Include Folders
Polyspace software automatically adds the standard include folders to your
project.

If your project uses additional include files, you can specify additional folders
to include with your verification.

To specify the include folders for the project:

1 In the Project Browser, select the Include folder.

2 Click the Add source icon in the upper left the Project Browser.

The Polyspace Project – Add Source Files and Include Folders dialog box
opens.

3-12

Creating a Project

3 In the Look in field, navigate to the folder containing your Include files.

4 Select the Include folders you want to include in the project, then click
Add Include.

The Include folders appear in the Include tree for your project.

5 Click Finish to apply the changes and close the dialog box.

The Include folders you selected appear in the Project Browser.

3-13

3 Setting Up a Verification Project

Managing Include File Sequence
You can change the order of the include folders in your project to manage the
sequence in which include files are compiled during verification.

To re-order the sequence of include folders for the project:

1 In the Project Browser, expand the Include folder.

2 Select the include folder you want to move.

3 Click the Move up or Move down icons in the Project Browser
toolbar to move the include.

The Include folders are reordered in the Project Browser.

3-14

Creating a Project

Creating Multiple Verifications
Each Polyspace project can contain multiple verifications. Each of these
verifications can analyze a specific set of source files using a specific set of
analysis options.

By default, each verification you create uses the same analysis options,
allowing you to verify different subsets of source files using the same options.
However, you can also create multiple configurations in each verification,
allowing you to change analysis options for each verification.

To create a new verification in your project:

1 In the Project Browser, select any project.

2 Click the Create a new verification icon in the upper left the Project
Browser.

A second verification, Verification_(2), appears in the Project Browser
tree.

3-15

3 Setting Up a Verification Project

3 In the Project Browser Source tree, right-click the files you want to add to
the verification, and select Copy Source File to > Verification_(2).

The source files appear in the Source tree of Verification_(2).

Creating Multiple Analysis Option Configurations
Each Polyspace project can contain multiple configurations. Each of these
configurations specifies a specific set of analysis options for a verification.
Using multiple configurations allows you to verify a set of source files multiple
times using different analysis options for each verification.

To create a new configuration in your project:

1 In the Project Browser, select any verification.

3-16

Creating a Project

2 Right-click the Configuration folder in the verification, and select Create
New Configuration. The new configuration appears in the Project
Browser.

3 In the Configuration pane, specify the appropriate analysis options for
the configuration.

4 Select File > Save to save your project with the new settings.

For detailed information about specific analysis options, see “Option
Descriptions”in the Polyspace Products or C Reference.

3-17

3 Setting Up a Verification Project

Changing Project Location
Polyspace software saves verification results in Verification_(#) subfolders
within the project folder. To change the location of your results, you must
change the project location.

To change the location of an existing project:

1 In the Project Browser, right-click on the project name and select Project
Properties.

The Polyspace Project – Properties dialog box opens:

2 Clear the Default location check box.

3 Enter the new Location for your project.

4 Click Finish.

3-18

Creating a Project

Specifying Target Environment
Many applications are designed to run on specific target CPUs and operating
systems. Since some run-time errors are dependent on the target, you must
specify the type of CPU and operating system used in the target environment
before running a verification.

The Compilation Assistant window in the top-right section of the Project
Manager perspective allows you to specify the target operating system and
processor type for your application.

To specify the target environment for your application:

1 In the Target operating system drop-down menu, select the operating
system on which your application is designed to run.

2 In the Target processor type drop down menu, select the processor on
which your application is designed to run.

For more information about emulating your target environment, see “Setting
Up a Target” on page 4-2.

Specifying Analysis Options
The Configuration window in the middle-right section of the Project Manager
perspective allows you to set Analysis options that Polyspace software uses
during the verification process. For more information about analysis options,
see “Options Description” in the Polyspace Products for C Reference.

3-19

3 Setting Up a Verification Project

To specify analysis options for your project:

1 In the Configuration pane of the Project Manager perspective, expand
General.

2 The General options appear.

3 Specify the appropriate analysis options for your project.

4 Select File > Save to save your project with the new settings.

For detailed information about specific analysis options, see “Option
Descriptions”in the Polyspace Products or C Reference.

Configuring Text and XML Editors
Before you running a verification you should configure your text and XML
editors in the Preferences. Configuring text and XML editors allows you to

3-20

Creating a Project

view source files and MISRA® reports directly from the Polyspace Verification
Environment.

To configure your text and .XML editors:

1 Select Options > Preferences.

The Polyspace Preferences dialog box opens.

2 Select the Editors tab.

The Editors tab opens.

3 Specify an XML editor to use to view MISRA-C reports. For example:

C:\Program Files\MSOffice\Office12\EXCEL.EXE

4 Specify a Text editor to use to view source files from the Project Manager
logs. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

3-21

3 Setting Up a Verification Project

5 Select your text editor in the Arguments drop-down menu to automatically
specify the command line arguments for that editor.

• Emacs

• Notepad++

• UltraEdit

• VisualStudio

• Wordpad

If you are using another text editor, select Custom from the drop-down
menu, and specify the command line arguments for the text editor.

6 Click OK.

Saving the Project
To save the project, select File > Save.

Polyspace software saves your project using the Project name and Location
you specified when creating the project.

3-22

Specifying Options to Match Your Quality Objectives

Specifying Options to Match Your Quality Objectives
While creating your project, you must configure analysis options to match
your quality objectives.

This includes:

In this section...

“Quality Objectives Overview” on page 3-23

“Choosing Contextual Verification Options” on page 3-23

“Choosing Strict or Permissive Verification Options” on page 3-26

“Choosing Coding Rules” on page 3-28

Quality Objectives Overview
While creating your project, you must configure analysis options to match
your quality objectives.

This includes choosing contextual verification options, coding rules, and
options to set the strictness of the verification.

Note For information on defining the quality objectives for your project, see
“Defining Quality Objectives” on page 2-5.

Choosing Contextual Verification Options
Polyspace software performs robustness verification by default. If you want
to perform contextual verification, there are several options you can use to
provide context for data ranges, function call sequence, and stubbing.

For more information on robustness and contextual verification, see “Choosing
Robustness or Contextual Verification” on page 2-5.

3-23

3 Setting Up a Verification Project

Note If you are aware of run-time errors in your code but still want to run
a verification, you can annotate your code so that these known errors are
highlighted in the Run-Time Checks perspective. For more information, see
“Annotating Code to Indicate Known Run-Time Errors” on page 5-37.

To specify contextual verification for your project:

1 In the Configuration pane of the Project Manager perspective, expand
Polyspace Inner Settings.

2 Expand the Generate a main and Stubbing options.

3-24

Specifying Options to Match Your Quality Objectives

3 To set ranges on variables, use the following options:

• Variable/function range setup (-data-range-specifications) –
Activates the DRS option, allowing you to set specific data ranges for a
list of global variables.

• Variables written before loop (-variables-written-before-loop)
– Specifies how the generated main initializes global variables.

4 To specify function call sequence, use the following options:

3-25

3 Setting Up a Verification Project

• Functions called before loop (-functions-called-before-loop) –
Specifies an initialization function called after initialization of global
variables but before the main loop.

• Functions called in loop (-functions-called-in-loop) – Specifies
how the generated main calls functions.

5 To control stubbing behavior, use the following options:

• No automatic stubbing (-no-automatic-stubbing) – Specifies that
the software will not automatically stub functions. The software list the
functions to be stubbed and stops the verification.

• Stub all functions (-permissive-stubber) – Specifies that the
software stubs all functions, including those with function pointers as
return type, or those with complex function pointers as parameters.

For more information on these options, see “Option Descriptions” in the
Polyspace Products for C Reference.

Choosing Strict or Permissive Verification Options
Polyspace software provides several options that allow you to customize the
strictness of the verification. You should set these options to match the
quality objectives for your application.

Note If you are aware of run-time errors in your code but still want to run
a verification, you can annotate your code so that these known errors are
highlighted in the Run-Time Checks perspective. For more information, see
“Annotating Code to Indicate Known Run-Time Errors” on page 5-37.

To specify the strictness of your verification:

1 In the Configuration pane of the Project Manager perspective, expand
Compliance with standards.

2 Expand the Strict and Permissive options.

3-26

Specifying Options to Match Your Quality Objectives

3 In addition, expand Polyspace Inner Settings > Assumptions.

4 Use the following options to make verification more strict:

• Detect overflows on signed and unsigned
(-scalar-overflow-checks) – Verification is more strict with
overflowing computations on unsigned integers.

• Do not consider all global variables to be initialized
(-no-def-init-glob) – Verification treats all global variables as
non-initialized, therefore causing a red error if they are read before they
are written to.

• Give all warnings (-wall) – Specifies that all C compliance warnings
are written to the log file during compilation.

3-27

3 Setting Up a Verification Project

• Strict (-strict) – Specifies strict verification mode, which is
equivalent to using the -wall and -no-automatic-stubbing options
simultaneously.

5 Use the following options to make verification more permissive:

• Enable pointer arithmetic out of bounds of fields
(-allow-ptr-arith-on-struct) – Enables navigation within a
structure or union from one field to another.

• Allow negative operand for left shifts
(-allow-negative-operand-in-shift) – Verification allows a shift
operation on a negative number.

• Ignore overflowing computations on constants
(-ignore-constant-overflows) – Verification is permissive
with overflowing computations on constants.

• Allow non int types for bitfields (-allow-non-int-bitfield) –
Allows you to define types of bitfields other than signed or unsigned int.

• Allow undefined global variables (-allow-undef-variables) –
Verification does not stop due to errors caused by undefined global
variables.

• Allow anonymous union/structure fields (-allow-unnamed-fields)
– Verification does not stop due to errors caused by unnamed fields in
structures.

• Kiel/IAR support (-dialect) – Verification allows syntax associated
with the IAR and Keil dialects.

For more information on these options, see “Option Descriptions” in the
Polyspace Products for C Reference.

Choosing Coding Rules
Polyspace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

For more information, see “Setting Up Project to Check Coding Rules” on
page 3-30.

3-28

Specifying Options to Match Your Quality Objectives

Note If you are aware of coding rule violations, but still want to run a
verification, you can annotate your code so that these known violations are
highlighted in the Coding Rules perspective. For more information, see
“Annotating Code to Indicate Known Coding Rule Violations” on page 5-34

3-29

3 Setting Up a Verification Project

Setting Up Project to Check Coding Rules

In this section...

“Polyspace MISRA Checker Overview” on page 3-30

“Checking Compliance with MISRA C Coding Rules” on page 3-30

Polyspace MISRA Checker Overview
Polyspace software can check that C code complies with MISRA C 2004
standards.2

The MISRA checker enables Polyspace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification. The MISRA checker can check nearly all of
the 141 MISRA C:2004 rules.

Note The Polyspace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

Checking Compliance with MISRA C Coding Rules
To check MISRA C compliance, you set an option in your project before
running a verification. Polyspace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Configuration pane of the Project Manager perspective, expand
Compliance with standards.

The Compliance with standards options appear.

2 Select the Check MISRA-C:2004 rules check box.

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

3-30

http://www.misra-c.com/

Setting Up Project to Check Coding Rules

3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and folders to ignore,
appear.

4 Specify which MISRA C rules to check and which, if any, files to exclude
from the checking.

Note For more information on using the MISRA C checker, see Chapter 11,
“MISRA C Coding Rules Checker”.

3-31

3 Setting Up a Verification Project

Setting up Project to Automatically Test Orange Code

In this section...

“Polyspace Automatic Orange Tester” on page 3-32

“Enabling the Automatic Orange Tester” on page 3-32

Polyspace Automatic Orange Tester
The Polyspace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you identify the cause of these errors.

The Automatic Orange Tester complements the results review in the
Run-Time Checks perspective by automatically creating test cases for all
input variables in orange code, and then dynamically testing the code to find
actual runtime errors.

For more information, see “Automatically Testing Orange Code” on page 9-45.

Enabling the Automatic Orange Tester
Before you can use the Automatic Orange Tester, you must run a Polyspace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To enable the automatic orange tester:

1 In the Analysis Options window, expand the Polyspace inner settings
menu.

2 Select the Automatic Orange Tester check box.

3-32

Setting up Project to Automatically Test Orange Code

The -prepare-automatic-tests option is enabled.

For more information on using the Automatic Orange Tester, see
“Automatically Testing Orange Code” on page 9-45.

3-33

3 Setting Up a Verification Project

Setting Up Project to Generate Metrics

In this section...

“About Polyspace Metrics” on page 3-34

“Enabling Polyspace Metrics” on page 3-34

“Specifying Automatic Verification” on page 3-35

About Polyspace Metrics
Polyspace Metrics is a Web-based tool for software development managers,
quality assurance engineers, and software developers, which allows you to
do the following in software projects:

• Evaluate software quality metrics

• Monitor the variation of code metrics, coding rule violations, and run-time
checks through the lifecycle of a project

• View defect numbers, run-time reliability of the software, review progress,
and the status of the code with respect to software quality objectives.

For information on using Polyspace Metrics, see Chapter 12, “Software
Quality with Polyspace Metrics”.

Enabling Polyspace Metrics
Before you can use Polyspace Metrics, you must run a Polyspace verification
with the -code-metrics option enabled. This option enables a metrics
computation engine that evaluates metrics for your code, and stores these
metrics in a results repository.

To enable code metrics:

1 In the Analysis Options window, expand the General menu.

2 Select the Add to results repository check box.

3 Select the Calculate code metrics check box.

3-34

Setting Up Project to Generate Metrics

Polyspace Metrics are generated for the next verification.

Specifying Automatic Verification
You can configure verifications to start automatically and periodically, for
example, at a specific time every night. At the end of each verification, the
software stores results in the repository and updates the project metrics.
You can also configure the software to send you an email at the end of the
verification.

For more information, see “Specifying Automatic Verification” on page 12-4.

3-35

3 Setting Up a Verification Project

3-36

4

Emulating Your Runtime
Environment

• “Setting Up a Target” on page 4-2

• “Verifying an Application Without a “Main”” on page 4-30

• “Specifying Data Ranges for Variables and Functions (Contextual
Verification)” on page 4-34

4 Emulating Your Runtime Environment

Setting Up a Target

In this section...

“Target/Compiler Overview” on page 4-2

“Specifying Target Environment” on page 4-3

“Predefined Target Processor Specifications” on page 4-4

“Modifying Predefined Target Processor Attributes” on page 4-7

“Defining Generic Target Processors” on page 4-9

“Common Generic Targets” on page 4-10

“Viewing Existing Generic Targets” on page 4-11

“Deleting a Generic Target ” on page 4-12

“Compiling Operating System Dependent Code (OS-target issues)” on page
4-13

“Address Alignment” on page 4-17

“Ignoring or Replacing Keywords Before Compilation” on page 4-18

“Verifying Code That Uses KEIL or IAR Dialects” on page 4-20

“How to Gather Compilation Options Efficiently” on page 4-28

Target/Compiler Overview
Many applications are designed to run on specific target CPUs and operating
systems. The type of CPU determines many data characteristics, such as
data sizes and addressing. These factors can affect whether errors (such as
overflows) will occur.

Since some run-time errors are dependent on the target CPU and operating
system, you must specify the type of CPU and operating system used in the
target environment before running a verification.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the Polyspace Products for C Reference.

4-2

Setting Up a Target

Specifying Target Environment
The Compilation Assistant window in the top-right section of the Project
Manager perspective allows you to specify the target operating system and
processor type for your application.

To specify the target environment for your application:

1 In the Target operating system drop-down menu, select the operating
system on which your application is designed to run.

2 In the Target processor type drop down menu, select the processor on
which your application is designed to run.

For detailed specifications for each predefined target processor, see
“Predefined Target Processor Specifications” on page 4-4.

Specifying Target/Compilation Parameters
You can also set Target/Compilation options in the Configuration pane of
the Project Manager.

To specify target parameters for your configuration:

1 In the Configuration pane of the Project Manager perspective, expand
Target/Compilation.

2 The Target/Compilation options appear.

4-3

4 Emulating Your Runtime Environment

3 Select the Target processor type for your application.

4 Specify the Operating system target for your application.

For detailed specifications for each predefined target processor, see
“Predefined Target Processor Specifications” on page 4-4.

For information on each Target/Compilation option, see “Target/Compiler
Options”in the Polyspace Products for C Reference.

Predefined Target Processor Specifications
Polyspace software supports many commonly used processors, as listed in the
table below. To specify one of the predefined processors, select it from the
Target processor type drop-down list.

4-4

Setting Up a Target

Predefined Target Processor Specifications

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

i386 8 16 32 32 64 32 64 96 32 signed Little 32

sparc 8 16 32 32 64 32 64 128 32 signed Big 64

m68k /
ColdFire3

8 16 32 32 64 32 64 96 32 signed Big 64

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64

c-167 8 16 16 32 32 32 64 64 16 signed Little 64

tms320c3x 32 32 32 32 64 32 32 404 32 signed Little 32

sharc21x61 32 32 32 32 64 32 32
[64]

32
[64]

32 signed Little 32

NEC-V850 8 16 32 32 32 32 32 64 32 signed Little 32
[16, 8]

hc085 8 16 16
[32]

32 32 32 32
[64]

32
[64]

166 unsigned Big 32
[16]

hc125 8 16 16
[32]

32 32 32 32
[64]

32
[64]

326 signed Big 32
[16]

mpc5xx5 8 16 32 32 64 32 32
[64]

32
[64]

32 signed Big 32
[16]

c18 8 16 16 32
[24]7

32 32 32 32 16
[24]

signed Little 8

3. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor

4. All operations on long double values will be imprecise (that is, shown as orange).

5. Non ANSI C specified keywords and compiler implementation-dependent pragmas and
interrupt facilities are not taken into account by this support

6. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width
physically.

7. The c18 target supports the type short long as 24-bits.

4-5

4 Emulating Your Runtime Environment

Predefined Target Processor Specifications (Continued)

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

x86_64 8 16 32 64 64 32 64 96 64 signed Little 64
[32]

mcpu
(Advanced)

8
[16]

8
[16]

16
[32]

32 32
[64]

32 32
[64]

32
[64]

16
[32]

signed Little 32
[16, 8]

After selecting a predefined target, you can modify some default attributes
by selecting the browse button to the right of the Target processor type
drop-down menu. The optional settings for each target are shown in [brackets]
in the table.

If your processor is not listed, you can specify a similar processor that shares
the same characteristics, or create a generic target processor.

Note If your target processor does not match the characteristics of any
processor described above, contact MathWorks technical support for advice.

4-6

Setting Up a Target

Modifying Predefined Target Processor Attributes
You can modify certain attributes of the predefined target processors. If your
specific processor is not listed, you may be able to specify a similar processor
and modify its characteristics to match your processor.

Note The settings that you can modify for each target are shown in [brackets]
in the Predefined Target Processor Specifications on page 4-5 table.

To modify target processor attributes:

1 In the Configuration pane of the Project Manager perspective, expand
Target/Compilation.

The Target/Compilation options appear.

2 Select the Target processor type you want to use.

3 Select the browse button to the right of the Target processor type
drop-down menu.

The Advanced target options dialog box opens.

4-7

4 Emulating Your Runtime Environment

4 Modify the attributes as needed.

For information on each target option, see “Generic Target Options”in the
Polyspace Products for C Reference.

5 Click OK to save your changes.

4-8

Setting Up a Target

Defining Generic Target Processors
If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the selecting the mcpu...
(Advanced) target, and specifying the characteristics of your processor.

To configure a generic target:

1 In Analysis options, expand Target/Compilation.

2 In the Target processor type drop-down menu, select mcpu...
(Advanced).

The Generic target options dialog box opens.

4-9

4 Emulating Your Runtime Environment

3 In Enter the target name, enter a name for your target.

4 Specify the appropriate parameters for your target, such as the size of basic
types, and alignment with arrays and structures.

For example, when the alignment of basic types within an array or
structure is always 8, it implies that the storage assigned to arrays and
structures is strictly determined by the size of the individual data objects
(without fields and end padding).

Note For information on each target option, see “Generic Target
Options”in the Polyspace Products for C Reference.

5 Click Save to save the generic target options and close the dialog box.

Common Generic Targets
The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big

alignment 8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big

alignment 8 8 8 8 8 8 8 8 8 N/A N/A

4-10

Setting Up a Target

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsigned Big

alignment 8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/
32

32 64 32 64 64 32 unsigned Big

alignment 8 16 32/
16

32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

Viewing Existing Generic Targets
Generic targets that you create are listed in the Preferences dialog box.

To view existing generic targets:

1 Select Options > Preferences.

The Preferences dialog box appears.

2 Select the Generic targets tab.

Previously defined generic targets appear in the generic targets list.

4-11

4 Emulating Your Runtime Environment

3 Click Cancel to close the dialog box.

Deleting a Generic Target
Generic targets that you create are stored as a Polyspace software preference.
Generic targets remain in your preferences until you delete them.

4-12

Setting Up a Target

Note You cannot delete a generic target if it is the currently selected target
processor type for the project.

To delete a generic target:

1 Select Options > Preferences.

The Preferences dialog box appears.

2 Select the Generic targets tab.

3 Select the target you want to remove.

4 Click Remove.

5 Click OK to apply the change and close the dialog box.

Compiling Operating System Dependent Code
(OS-target issues)
This section describes the options required to compile and verify code designed
to run on specific operating systems. It contains the following:

• “List of Predefined Compilation Flags” on page 4-13

• “My Target Application Runs on Linux” on page 4-15

• “My Target Application Runs on Solaris” on page 4-16

• “My Target Application Runs on Vxworks” on page 4-16

• “My Target Application Does Not Run on Linux, vxworks nor Solaris” on
page 4-17

List of Predefined Compilation Flags
These flags concern the predefined OS-target options: no-predefined-OS,
linux, vxworks, Solaris and visual (-OS-target option).

4-13

4 Emulating Your Runtime Environment

OS-target Compilation flags —include file and content

no-predefined-OS -D__STDC__

visual -D__STDC__ -include
<product_dir>/cinclude/pst-visual.h

vxworks -D__STDC__
-DANSI_PROTOTYPES
-DSTATIC=
-DCONST=const
-D__GNUC__=2
-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4__
-D__SVR4

-include
<product_dir>/cinclude/pst-vxworks.h

linux -D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=6
-D__GNUC__=2
-D__GNUC_MINOR__=6
-D__ELF__
-Dunix
-D__unix
-D__unix__
-Dlinux
-D__linux
-D__linux__
-Di386
-D__i386
-D__i386__
-Di686
-D__i686
-D__i686__

<product_dir>/cinclude/pst-linux.h

4-14

Setting Up a Target

OS-target Compilation flags —include file and content

-Dpentiumpro
-D__pentiumpro
-D__pentiumpro__

Solaris -D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GCC_NEW_VARARGS__
-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4__
-D__SVR4

No -include file mentioned

Note The use of the OS-target option is entirely equivalent to the following
alternative approaches.

• Setting the same -D flags manually, or

• Using the -include option on a copied and modified pst-OS-target.h file

My Target Application Runs on Linux
The minimum set of options is as follows:

polyspace-c \
-OS-target Linux \
-I Polyspace_Install/Verifier/include/include-linux \
-I Polyspace_Install/Verifier/include/include-linux/next \

4-15

4 Emulating Your Runtime Environment

...

where the Polyspace product has been installed in the folder
Polyspace_Install.

If your target application runs on Linux but you are launching your
verification from Windows, the minimum set of options is as follows:

polyspace-c \
-OS-target Linux \
-I Polyspace_Install\Verifier\include\include-linux \
-I Polyspace_Install\Verifier\include\include-linux\next \
...

where the Polyspace product has been installed in the folder
Polyspace_Install.

My Target Application Runs on Solaris
If Polyspace software runs on a Linux machine:

polyspace-c \
-OS-target Solaris \
-I /your_path_to_solaris_include

If Polyspace software runs on a Solaris™ machine:

polyspace-c \
-OS-target Solaris \
-I /usr/include

My Target Application Runs on Vxworks
If Polyspace software runs on either a Solaris or a Linux machine:

polyspace-c \
-OS-target vxworks \
-I /your_path_to/Vxworks_include_folders

4-16

Setting Up a Target

My Target Application Does Not Run on Linux, vxworks nor
Solaris
If Polyspace software does not run on either a Solaris or a Linux machine:

polyspace-c \
-OS-target no-predefined-OS \
-I /your_path_to/MyTarget_include_folders

Address Alignment
Polyspace software handles address alignment by calculating sizeof and
alignments. This approach takes into account 3 constraints implied by the
ANSI standard which guarantee that:

• that global sizeof and offsetof fields are optimum (i.e. as short as
possible);

• the alignment of all addressable units is respected;

• global alignment is respected.

Consider the example:

struct foo {char a; int b;}

• Each field must be aligned; that is, the starting offset of a field must be
a multiple of its own size8

• So in the example, char a begins at offset 0 and its size is 8 bits. int b
cannot begin at 8 (the end of the previous field) because the starting offset
must be a multiple of its own size (32 bits). Consequently, int b begins at
offset=32. The size of the struct foo before global alignment is therefore
64 bits.

• The global alignment of a structure is the maximum of the individual
alignments of each of its fields;

• In the example, global_alignment = max (alignment char a,
alignment int b) = max (8, 32) = 32

8. except in the cases of “double” and “long” on some targets.

4-17

4 Emulating Your Runtime Environment

• The size of a struct must be a multiple of its global alignment. In our case,
b begins at 32 and is 32 long, and the size of the struct (64) is a multiple of
the global_alignment (32), so sizeof is not adjusted.

Ignoring or Replacing Keywords Before Compilation
You can ignore noncompliant keywords such as “far” or 0x followed by an
absolute address. The template provided in this section allows you to ignore
these keywords.

To ignore keywords:

1 Save the following template in c:\Polyspace\myTpl.pl.

2 In the Target/Compilation options, select Command/script to apply to
preprocessed files.

3 Select myTpl.pl using the browse button.

For more information, see -post-preprocessing-command.

Content of the myTpl.pl file

#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from Project Manager GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Solaris: /usr/local/bin/perl PostProcessingTemplate.pl
3) Windows: \Verifier\tools\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

4-18

Setting Up a Target

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

Remove far keyword
s/far//;

Remove "@ 0xFE1" address constructs
s/\@\s0x[A-F0-9]*//g;

Remove "@0xFE1" address constructs
s/\@0x[A-F0-9]*//g;

Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

Convert current line to lower case
$_ =~ tr/A-Z/a-z/;

Print the current processed line
print $OUTFILE $_;

}

Perl Regular Expression Summary

###
Metacharacter What it matches
###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters

4-19

4 Emulating Your Runtime Environment

\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

Verifying Code That Uses KEIL or IAR Dialects
Typical embedded control applications frequently read and write port data,
set timer registers and read input captures. To deal with this without using

4-20

Setting Up a Target

assembly language, some microprocessor compilers have specified special
data types like sfrand sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx
micro processor. The definition of sfr in these header files customizes the
compiler to the target processor.

When accessing a register or a port, using sfr data is then simple, but is
not part of standard ANSI C:

int status,P0;

void main (void) {
ADCUP = 0x08; /* Write data to register */
A1 = 0xFF; /* Write data to Port */
status = P0; /* Read data from Port */
EI = 1; /* Set a bit (enable all interrupts) */

}

You can verify this type of code using the Kiel/IAR support option
(-dialect). This option allows the software to support the Keil or IAR C
language extensions even if some structures, keywords, and syntax are not
ANSI standard. The following tables summarize what is supported when
verifying code that is associated with the keil or iar dialects.

The following table summarizes the supported keil C language extensions:

4-21

4 Emulating Your Runtime Environment

Example: -dialect keil -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the
type, gives 1 if it is
not equal to 0, else
0. This behavior is
similar to c++ bool
type.

bit x = 0, y = 1,
z = 2;

assert(x == 0);
assert(y == 1);
assert(z == 1);
assert(sizeof(bit)
== sizeof(int));

pointers to bits and
arrays of bits are
not allowed

Type sfr • The -sfr-types option
defines unsigned
types name and size
in bits.

• The behavior of
a variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //
declaration of
variable x at
address 0xF0
sfr16 y = 0x4EEF;

For this example, options
need to be:

-dialect keil
-sfr-types sfr=8, \

sfr16=16

sfr and sbit types
are only allowed
in declarations of
external global
variables.

4-22

Setting Up a Target

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Type sbit • Each read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

• Only external global
variables can be
mapped with a sbit
variable.

• Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

• a variable can also
be declared as extern
bit in an another file.

sfr x = 0xF0;
sbit x1 = x ^ 1; // 1st bit of x
sbit x2 = 0xF0 ^ 2; // 2nd bit of x
sbit x3 = 0xF3; // 3rd bit of x
sbit y0 = t[3] ^ 1;

/* file1.c */
sbit x = P0 ^ 1;
/* file2.c */
extern bit x;
x = 1; // set the 1st bit of P0 to 1

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0
int x @ 0xFE ;
static const
int y @ 0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

4-23

4 Emulating Your Runtime Environment

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Interrupt
functions

A warnings in the
log file is displayed
when an interrupt
function has been
found: "interrupt
handler detected :
<name>" or "task
entry point detected :
<name>"

void foo1 (void)
interrupt XX = YY
using 99 { }
void foo2 (void) _
task_ 99 _priority_
2 { }

Entry points and
interrupts are not
taken into account
as -entry-points.

Keywords ignored alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large,
reentrant. Defining -D __C51__, keywords large code, data, xdata, pdata
and xhuge are ignored.

The following table summarize the iar dialect:

Example: -dialect iar -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the
type, gives 1 if it is
not equal to 0, else
0. This behavior is
similar to c++ bool
type.

• If initialized with
values 0 or 1, a
variable of type bit
is a simple variable
(like a c++ bool).

union {
int v;
struct {

int z;
} y;

} s;

void f(void) {
bit y1 = s.y.z . 2;
bit x4 = x.4;
bit x5 = 0xF0 . 5;
y1 = 1;

// 2nd bit of s.y.z
// is set to 1

};

pointers to bits and
arrays of bits are
not allowed

4-24

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

• A variable of type
bit is a register bit
variable (mapped
with a bit or a sfr
type)

Type sfr • The -sfr-types option
defines unsigned
types name and size.

• The behavior of
a variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //
declaration of
variable x at
address 0xF0

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

• Individual bit
can be accessed
without using sbit/bit
variables.

• Type is allowed for
integer variables,
cells of integer array,
and struct/union
integral fields.

int x[3], y;
x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ 0xF0;
int xx @ 0xFE ;
static const int y \
@0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

4-25

4 Emulating Your Runtime Environment

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Interrupt
functions

• A warning is
displayed in the
log file when an
interrupt function
has been found:
"interrupt handler
detected : funcname"

• A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

interrupt [1] \
using [99] void \
foo1(void) { ... };

monitor [3] void \
foo2(void) { ... };

Entry points and
interrupts are not
taken into account
as -entry-points.

Keywords ignored saddr, reentrant, reentrant_idata, non_banked, plm, bdata,
idata, pdata, code, data, xdata, xhuge, interrupt, __interrupt
and __intrinsic

Unnamed
struct/union

• Fields of
unions/structs with
no tag and no name
can be accessed
without naming their
parent struct.

• Option
-allow-unnamed-fields
need to be used to
allow anonymous
struct fields.

• On a conflict
between a field
of an anonymous
struct with other
identifiers:

union { int x; };
union { int y; struct { int
z; }; } @ 0xF0;

4-26

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

- with a variable
name, field name
is hidden

- with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

- with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict“
is displayed in the
log file.

no_init attribute • a global variable
declared with this
attribute is handled
like an external
variable.

• It is handled like a
type qualifier.

no_init int x;
no_init union
{ int y; } @ 0xFE;

#pragma no_init
has no effect

The option sfr-types defines the size of a sfr type for the keil or iar dialect.

The syntax for an sfr element in the list is type-name=typesize.

For example:

sfr-types sfr=8,sfr16=16

4-27

4 Emulating Your Runtime Environment

defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of
16-bits. A value type-name must be given only once. 8, 16 and 32 are the
only supported values for type-size.

Note As soon as an sfr type is used in the code, you must specify its name
and size, even if it is the keyword sfr.

Note Many IAR and Keil compilers currently exist that are associated to
specific targets. It is difficult to maintain a complete list of those supported.

How to Gather Compilation Options Efficiently
The code is often tuned for the target (as discussed to “Verifying Code That
Uses KEIL or IAR Dialects” on page 4-20). Rather than applying minor
changes to the code, create a single polyspace.h file which will contain all
target specific functions and options. The -include option can then be used to
force the inclusion of the polyspace.h file in all source files under verification.

Where there are missing prototypes or conflicts in variable definition, writing
the expected definition or prototype within such a header file will yield
several advantages.

Direct benefits:

• The error detection is much faster since it will be detected during
compilation rather than in the link or subsequent phases.

• The position of the error will be identified more precisely.

• There will be no need to modify original source files.

Indirect benefits:

• The file is automatically included as the very first file in all original .c files.

• The file can contain much more powerful macro definitions than simple
-D options.

4-28

Setting Up a Target

• The file is reusable for other projects developed under the same
environment.

Example

This is an example of a file that can be used with the -include option.

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Generic definitions, reusable from one project to another
#define far
#define at(x)

// A prototype may be positioned here to aid in the solution of
// a link phase conflict between
// declaration and definition. This will allow detection of the
// same error at compilation time instead of at link time.
// Leads to:
// - earlier detection
// - precise localisation of conflict at compilation time
void f(int);

// The same also applies to variables.
extern int x;

// Standard library stubs can be avoided,
// and OS standard prototypes redefined.

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
//automatic stubbing of std functions

#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

4-29

4 Emulating Your Runtime Environment

Verifying an Application Without a “Main”

In this section...

“Main Generator Overview” on page 4-30

“Automatically Generating a Main” on page 4-31

“Manually Generating a Main” on page 4-32

“Main Generator Assumptions” on page 4-33

Main Generator Overview
When your application is a function library (API) or a single module, you must
provide a main that calls each function because of the execution model used
by Polyspace verification. You can either manually provide a main, or have
Polyspace software generate one for you automatically.

When you run a verification on Polyspace Client for C/C++ software, the main
is always generated. When you run a verification on Polyspace Server for
C/C++ software, you can choose to automatically generate a main by selecting
the Generate a main (-main-generator) option.

Polyspace Client for C/C++ Main Generator
The Polyspace Client for C/C++ product automatically checks your code for
a main.

• If a main exists in the set of files, the verification uses that main.

• If a main does not exist, the tool generates a main using the options you
specify.

Polyspace Server for C/C++ Main Generator
If you do not select the -main-generator option, a Polyspace Server for C/C++
verification stops if it does not detect a main. This behavior can help isolate
files missing from the verification.

When you select the -main-generator option, the Polyspace Server for C/C++
product checks your code for a main.

4-30

Verifying an Application Without a “Main”

• If a main exists in the set of files, the verification uses that main.

• If a main does not exist, the tool generates a main using the options you
specify.

Automatically Generating a Main
When you run a client verification, or a server verification using the
Generate a main (-main-generator) option, the software automatically
generates a main.

The generated main has the following behavior.

1 It initializes any variables identified by the option -variables
written-before-loop.

2 It calls any functions specified by the option
-functions-called-before-loop. This could be considered an
initialization function.

3 It initializes any variables identified by the option -variables
written-in-loop.

4 It calls any functions specified by the option -functions-called-in-loop.

5 It calls any functions specified by the option
-functions-called-after-loop. This could be a terminate function for
a cyclic program.

For more information on the main generator, see “Main Generator Behavior
for Polyspace Software”.

Main for Generated Code

The following example shows how to use the main generator options to
generate a main for a cyclic program, such as code generated from a Simulink
model.

init parameters \\ -variables-written-before-loop
init_fct() \\ -functions-called-before-loop
while(1){ \\ start main loop
init inputs \\ -variables-written-in-loop

4-31

4 Emulating Your Runtime Environment

step_fct() \\ -functions-called-in-loop
}
terminate_fct() \\ -functions-called-after-loop

Manually Generating a Main
Manually generating a main is often preferable to an automatically generated
main, because it allows you to provide a more accurate model of the calling
sequence to be generated.

There are three steps involved in manually defining the main.

1 Identify the API functions and extract their declaration.

2 Create a main containing declarations of a volatile variable for each type
that is mentioned in the function prototypes.

3 Create a loop with a volatile end condition.

4 Inside this loop, create a switch block with a volatile condition.

5 For each API function, create a case branch that calls the function using
the volatile variable parameters you created.

Consider the following example. Suppose that the API functions are:

int func1(void *ptr, int x);
void func2(int x, int y);

You should create the following main:7

void main()
{
volatile int random; /* We need an integer variable as a function
parameter */
volatile void * volatile ptr; /* We need a void pointer as a function
parameter */
while (random) {
switch (random) {
case 1:
random = func1(ptr, random); break; /* One API function call */

default:

4-32

Verifying an Application Without a “Main”

func2(random, random); /* Another API function call */
}

}

Main Generator Assumptions
When using the automatic main generator to verify a specific function, the
main objective is to find problems with the function itself. To do this, the
generated main makes assumptions about parameters so that you can focus
on runtime errors (red, grey and orange) related to the function itself.

The main generator makes assumptions about the arguments of called
functions to reduce the number of orange checks in the results. Therefore,
when you see an orange check in your results, it is likely due to the function
itself, not the main.

However, green checks are computed with the same assumptions. Therefore,
you should be cautious of green checks involving the main itself, especially
when conducting unit-by-unit verification.

4-33

4 Emulating Your Runtime Environment

Specifying Data Ranges for Variables and Functions
(Contextual Verification)

In this section...

“Overview of Data Range Specifications (DRS)” on page 4-34

“Specifying Data Ranges Using DRS Template” on page 4-35

“DRS Configuration Settings” on page 4-38

“Specifying Data Ranges Using Existing DRS Configuration” on page 4-42

“Editing Existing DRS Configuration” on page 4-43

“Specifying Data Ranges Using Text Files” on page 4-44

“Variable Scope” on page 4-47

“Performing Efficient Module Testing with DRS” on page 4-51

“Reducing Oranges with DRS” on page 4-52

Overview of Data Range Specifications (DRS)
By default, Polyspace software performs robustness verification, proving that
the software works under all conditions. Robustness verification assumes that
all data inputs are set to their full range. Therefore, nearly any operation on
these inputs could produce an overflow.

The Polyspace Data Range Specifications (DRS) feature allows you to perform
contextual verification, proving that the software works under normal working
conditions. Using DRS, you set constraints on data ranges, and verify the
code within these ranges. This can substantially reduce the number of orange
checks in the verification results.

You can use DRS to set constraints on:

• Global variables

• Input parameters for user-defined functions called by the main generator

• Return values for stub functions

4-34

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Note Data ranges are applied during verification level 2 (pass2).

Specifying Data Ranges Using DRS Template
To use the DRS feature, you must provide a list of variables (or functions) and
their associated data ranges.

Polyspace software can analyze the files in your project, and generate a DRS
template containing all the global variables, user defined functions, and stub
functions for which you can specify data ranges. You can then modify this
template to set data ranges.

To use a DRS template to set data ranges:

1 Open the Project for which you want to set data ranges.

2 Ensure that the Project contains all the source files and Include folders you
want to verify, and specifies the Analysis options you want to use for the
verification. The Compile phase of verification must complete successfully
for the software to generate a DRS template.

3 In the Configuration pane of the Project Manager perspective, select
Polyspace inner settings > Stubbing.

4 In the Variable/function range setup row, select the browse button .

The Polyspace DRS configuration dialog box opens.

4-35

4 Emulating Your Runtime Environment

5 Select Stop and edit DRS template after compilation step, then click
Finish.

6 Click the Run button .

The software compiles the project and generates a DRS template. At
the end of the Compile phase, verification stops and the Polyspace DRS
configuration dialog box opens.

4-36

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Note The DRS template file is generated in your results folder, named
drs-template.xml.

7 Specify the data ranges for global variables, user-defined function
inputs, and stub-function return values. For more information, see “DRS
Configuration Settings” on page 4-38.

8 Click (Save DRS as), and save your DRS configuration file to a location
other than the results folder.

4-37

4 Emulating Your Runtime Environment

Caution Do not save your DRS configuration file in the results folder.
The results folder is overwritten each time you launch a verification, so
your data ranges may be lost.

9 Click Finish. The Polyspace DRS configuration dialog box closes.

DRS Configuration Settings
The Polyspace DRS Configuration dialog box allows you specify data ranges
for all the global variables, user defined functions, and stub functions in
your project. The following table describes the parameters in the DRS
Configuration interface.

Column Settings

Name Displays the list of variables and functions in your
Project for which you can specify data ranges. This
Column displays three expandable menu items:

• Globals – Displays a list of all global variables in
the Project.

• User defined functions – Displays a list of all
user-defined functions in the Project. Expand any
function name to see a list of the input arguments for
which you can specify a data range.

• Stubbed functions – Displays a list of all stub
functions in the Project. Expand any function name
to see a list of the return values for which you can
specify a data range.

File Displays the name of the source file containing the
variable or function.

Attributes Displays information about the variable or function. For
example, static variables display static.

Type Displays the variable type.

4-38

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Column Settings

Main Generator
Called

Applicable only for user-defined functions. Specifies
whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call
this function, depending on the value of the
-functions-called-in-loop parameter.

• NO – Main generator will not call this function.

• YES – Main generator will call this function.

Init Mode Specifies how the software assigns a range to the
variable:

• MAIN GENERATOR – Variable range is assigned
depending on the settings of the main generator
options -variables-written-before-loop and
-no-def-init-glob.

• IGNORE – Variable is not assigned to any range, even if
a range is specified.

• INIT – Variable is assigned to the specified range only
at initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the
specified range. If the variable is assigned outside this
range during the program, no warning is provided.
Use the globalassert mode if you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

Global pointers support MAIN GENERATOR, IGNORE, or
INIT mode.

• MAIN GENERATOR – Pointer follows the options of the
main generator.

• IGNORE – Pointer is not initialized

4-39

4 Emulating Your Runtime Environment

Column Settings

• INIT – Specify if the pointer is NULL, and how the
pointed object is allocated (Initialize Pointer and
Init Allocated options).

Init Range Specifies the minimum and maximum values for the
variable. You can use the keywords min and max to
denote the minimum and maximum values of the
variable type. For example, for the type long, min and
max correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example:
0x12..0x100

Initialize
Pointer

Applicable only to pointers. Enabled only when you
specify Init Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a
NULL pointer (or not).

• Not Null – The pointer is never initialized as a null
pointer.

• Null – The pointer is initialized as NULL.

Init Allocated Applicable only to pointers. Enabled only when you
specify Init Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by
the main generator.

• None – Pointed object is not written.

• SINGLE – Write the pointed object or the first element
of an array. (This setting is useful for stubbed function
parameters.)

• MULTI – All objects (or array elements) are initialized.

4-40

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Column Settings

See Pointer Examples on page 4-41.

Allocated
Objects

Applicable only to pointers.Specifies how many objects
are pointed to by the pointer (the pointed object is
considered as an array).

Note: The Init Allocated parameter specifies how many
allocated objects are actually initialized. See Pointer
Examples on page 4-41.

Global Assert Specifies whether to perform an assert check on
the variable at global initialization, and after each
assignment.

Global Assert
Range

Specifies the minimum and maximum values for the
range you want to check.

Pointer Examples

For pointer p, # Allocated objects = 1, and Init Allocated = Single:

void f(int *p) {
int x;
x = p[0]; // green IDP, green NIV
x = p[1]; // red IDP: out of bounds

}

Note Pointer p may point to any element inside the array.

For pointer p (a pointer to int), # Allocated objects = 3, and Init Allocated
= MULTI:

void f(int *p) {
int x;
x = p[0]; // green IDP, green NIV
x = p[1]; // orange IDP, green NIV
x = p[2]; // orange IDP, green NIV

4-41

4 Emulating Your Runtime Environment

x = p[3]; // red IDP: out of bounds
}

Specifying Data Ranges Using Existing DRS
Configuration
Once you have created a DRS configuration file for a Project, you can reuse
the data ranges for subsequent verifications.

To specify an existing DRS configuration file for your Project:

1 Open the Project.

2 In the Configuration pane of the Project Manager perspective, select
Polyspace inner settings > Stubbing.

3 In the Variable/function range setup row, select the browse button .

The Polyspace DRS configuration dialog box opens.

4 Select Use information content from an existing DRS file.

5 Specify the DRS file location, or click the Browse button to select
the DRS configuration file you want to use.

4-42

Specifying Data Ranges for Variables and Functions (Contextual Verification)

6 Click Finish.

The Polyspace DRS configuration dialog box closes.

7 Select File > Save Project to save your Project settings, including the
DRS file location.

The software uses the specified DRS configuration file the next time you
launch a verification.

Editing Existing DRS Configuration
Once you have created a DRS configuration file for your Project, you can edit
the configuration using the Polyspace DRS configuration interface.

To edit an existing DRS configuration:

1 Open the Project.

2 In the Configuration pane of the Project Manager perspective, select
Polyspace inner settings > Stubbing.

3 In the Variable/function range setup row, select the browse button .

The Polyspace DRS configuration dialog box opens.

4 Specify the data ranges for global variables, user-defined function inputs,
and stub-function return values.

4-43

4 Emulating Your Runtime Environment

5 Click (Save DRS), to save your DRS configuration file.

6 Click Finish.

The Polyspace DRS configuration dialog box closes.

Specifying Data Ranges Using Text Files
To use the DRS feature, you must provide a list of variables (or functions) and
their associated data ranges.

You can specify data ranges using the Polyspace DRS configuration interface
(see “Specifying Data Ranges Using DRS Template” on page 4-35), or you can
provide a text file that contains a list of variables and data ranges.

Note If you used the DRS feature prior to R2010a, you created a text file to
specify data ranges. The format of this file has not changed. You can use your
existing DRS text file to specify data ranges.

To specify data ranges using a DRS text file:

1 Create a DRS text file containing the list of global variables (or functions)
and their associated data ranges, as described in “DRS Text File Format”
on page 4-46.

2 Open your Project.

3 In the Configuration pane of the Project Manager perspective, select
Polyspace inner settings > Stubbing.

4 In the Variable/function range setup row, select the browse button .

The Polyspace DRS configuration dialog box opens.

4-44

Specifying Data Ranges for Variables and Functions (Contextual Verification)

5 Select Use information content from an existing DRS file.

6 Specify the DRS file location, or click the Browse button to select
the DRS text file you want to use.

7 Click Finish.

The Polyspace DRS configuration dialog box closes.

8 Select File > Save Project to save your Project settings, including the
DRS text file location.

When you launch a verification, the software automatically merges the data
ranges in the text file with a DRS template for the project, and saves the
information in the file drs-template.xml, located in your results folder.

You can continue to use the DRS text file for future verifications, or change
the DRS file location to specify the generated file drs-template.xml (See
“Specifying Data Ranges Using Existing DRS Configuration” on page 4-42).

If you specify the .xml template, you can then edit your data ranges using
the DRS configuration interface (see “Editing Existing DRS Configuration”
on page 4-43).

4-45

4 Emulating Your Runtime Environment

DRS Text File Format
The DRS file contains a list of global variables and associated data ranges.
The point during verification at which the range is applied to a variable is
controlled by the mode keyword: init, permanent, or globalassert.

The DRS file must have the following format:

variable_name min_value max_value <init|permanent|globalassert>

function_name.return min_value max_value permanent

• variable_name— The name of the global variable.

• min_value— The minimum value for the variable.

• max_value— The maximum value for the variable.

• init— The variable is assigned to the specified range only at initialization,
and keeps it until first write.

• permanent— The variable is permanently assigned to the specified range.
If the variable is assigned outside this range during the program, no
warning is provided. Use the globalassert mode if you need a warning.

• globalassert — After each assignment, an assert check is performed,
controlling the specified range. The assert check is also performed at
global initialization.

• function_name — The name of the stub function.

Tips for Creating DRS Text Files

• You can use the keywords "min" and "max" to denote the minimum and
maximum values of the variable type. For example, for the type long, min
and max correspond to -2^31 and 2^31-1 respectively.

• You can use hexadecimal values. For example, x 0x12 0x100 init.

• Supported column separators are tab, comma, space, or semicolon.

• To insert comments, use shell style “#”.

• init is the only mode supported for user-defined function arguments.

• permanent is the only mode supported for stub function output.

4-46

Specifying Data Ranges for Variables and Functions (Contextual Verification)

• Function names may be C or C++ functions with blanks or commas. For
example, f(int, int).

• Function names can be specified in the short form (“f") as long as no
ambiguity exists.

• The function returns either an integral (including enum and bool) or
floating point type. If the function returns an integral type and you specify
the range as a floating point [v0.x, v1.y], the software applies the
integral interval [(int)v0-1, (int)v1+1].

Example DRS Text File
In the following example, the global variables are named x, y, z, w, and v.

x 12 100 init
y 0 10000 permanent
z 0 1 globalassert
w min max permanent
v 0 max globalassert
arrayOfInt -10 20 init
s1.id 0 max init
array.c2 min 1 init
car.speed 0 350 permanent
bar.return -100 100 permanent

x is defined between [12;100] at initialization
y is permanently defined between [0,10000] even any assignment
z is checked in the range [0;1] after each assignment
w is volatile and full range on its declaration type
v is positive and checked after each assignment.
All cells arrayOfInt are defined between [-10;20] at initializsation
s1.id is defined between [0;2^31-1] at initialisation.
All cells array[i].c2 are defined between [-2^31;1] at initialization
Speed of Struct car is permanently defined between 0 and 350 Km/h
function bar returns -100..100

Variable Scope
DRS supports variables with external linkages, const variables, and defined
variables. In addition, extern variables are supported with the option
-allow-undef-variables.

4-47

4 Emulating Your Runtime Environment

Note If you set a data range on a const global variable that is used in another
variable declaration (for example as an array size) the variable using the
global variable ranged, is not ranged itself.

The following table summarizes possible uses:

init permanent globalassert comments

Integer Ok Ok Ok char, short, int,
enum, long and
long long

If you define
a range in
floating point
form, rounding is
applied.

Real Ok Ok Ok float, double
and long double

If you define
a range in
floating point
form, rounding is
applied.

Volatile No effect Ok Full range Only for int and
real

Structure field Ok Ok Ok Only for int
and real fields,
including arrays
or structures of
int or real fields
(see below)

4-48

Specifying Data Ranges for Variables and Functions (Contextual Verification)

init permanent globalassert comments

Structure field in
array

Ok No effect No effect Only when
leaves are int or
real. Moreover
the syntax is
the following:
<array_name>.
<field_name>

Array Ok Ok Ok Only for int
and real
fields, including
structures or
arrays of integer
or real fields (see
below)

Pointer Ok No effect No effect You can specify
how the main
generator
initializes the
pointed variable,
and how the
pointed object
is written.

Union field Ok No effect Ok See “DRS
Support for
Union Members”
on page 4-50.

Complete
structure

No effect No effect No effect

Array cell No effect No effect No effect Example:
array[0],
array[10] …

4-49

4 Emulating Your Runtime Environment

init permanent globalassert comments

User-defined
function
arguments

Ok No effect No effect Main generator
calls the function
with arguments
in the specified
range

Stubbed function
return

No effect Ok No effect Stubbed function
returning integer
or floating point

Every variable (or function) and associated data range will be written in the
log file during the compile phase of verification. If Polyspace software does
not support the variable, a warning message is displayed.

Note If you use DRS to set a data range on a const global variable that
is used in another variable declaration (for example as an array size), the
variable that uses the global variable you ranged is not ranged itself.

DRS Support for Structures
DRS can initialize arrays of structures, structures of arrays, etc., as the long
as the last field is explicit (structures of arrays of integers, for example).

However, DRS cannot initialize a structure itself — you can only initialize the
fields. For example, "s.x 20 40 init" is valid, but "s 20 40 init" is not
(because Polyspace software cannot determine what fields to initialize).

DRS Support for Union Members
In init mode, the software applies the last range in DRS to the union members
at the given offset.

In globalassert mode, the software checks every globalassert in DRS for
a given offset within the union at every assignment to the union variable
at that offset.

For example:

4-50

Specifying Data Ranges for Variables and Functions (Contextual Verification)

union position {
int sunroof;
int window;
int locks;

} positionData;

DRS:

positionData.sunroof 0 100 globalassert
positionData.window -100 0 globalassert
positionData.locks -1 1 globalassert

An assignment to positionData.locks (or other members) will perform
assertion checking on the ranges 0 to 100, -100 to 0, and -1 to 1.

Performing Efficient Module Testing with DRS
DRS allows you to perform efficient static testing of modules. This is
accomplished by adding design level information missing in the source-code.

A module can be seen as a black box having the following characteristics:

• Input data are consumed

• Output data are produced

• Constant calibrations are used during black box execution influencing
intermediate results and output data.

Using the DRS feature, you can define:

• The nominal range for input data

• The expected range for output data

• The generic specified range for calibrations

These definitions then allow Polyspace software to perform a single static
verification that performs two simultaneous tasks:

• answering questions about robustness and reliability

4-51

4 Emulating Your Runtime Environment

• checking that the outputs are within the expected range, which is a result
of applying black-box tests to a module

In this context, you assign DRS keywords according to the type of data
(inputs, outputs, or calibrations).

Type of Data DRS Mode Effect on Results Why? Oranges Selectivity

Inputs
(entries)

permanent Reduces the number
of oranges, (compared
with a standard
Polyspace verification)

Input data that were
full range are set to a
smaller range.

↓ ↑

Outputs globalassert Increases the number
of oranges, (compared
with a standard
Polyspace verification)

More verification is
introduced into the
code, resulting in
both more orange
checks and more
green checks.

↑ →

Calibration init Increases the number
of oranges, (compared
with a standard
Polyspace verification)

Data that were
constant are set to
a wider range.

↑ ↓

Reducing Oranges with DRS
When performing robustness (worst case) verification, data inputs are always
set to their full range. Therefore, every operation on these inputs, even a
simple “one_input + 10” can produce an overflow, as the range of one_input
varies between the min and the max of the type.

If you use DRS to restrict the range of “one-input” to the real functional
constraints found in its specification, design document, or models, you can
reduce the number of orange checks reported on the variable. For example, if
you specify that “one-input” can vary between 0 and 10, Polyspace software
will definitely know that:

4-52

Specifying Data Ranges for Variables and Functions (Contextual Verification)

• one_input + 100 will never overflow

• the results of this operation will always be between 100 and 110

This not only eliminates the local overflow orange, but also results in more
accuracy in the data. This accuracy is then propagated through the rest of
the code.

Using DRS removes the oranges located in the red circle below.

Why Is DRS Most Effective on Module Testing?
Removing oranges caused by full-range (worst-case) data can drastically
reduce the total number of orange checks, especially when used on
verifications of small files or modules. However, the number of orange checks
caused by code complexity is not effected by DRS. For more information on
oranges caused by code complexity, see “Subdividing Code” on page 7-37.

This section describes how DRS reduces oranges on files or modules only.

4-53

4 Emulating Your Runtime Environment

Example
The following example illustrates how DRS can reduce oranges. Suppose that
in the real world, the input “My_entry” can vary between 0 and 10.

Polyspace verification produces the following results: one with DRS and one
without.

Without DRS With DRS — 2 Oranges Removed + Return
Statement More Accurate

• With “My_entry“ being full range, the
addition “+” is orange,

• the result “x” is equal to all values between
[min+100 max]

• Due to previous computations, x+1 can here
overflow too, making the addition “+”orange.

• With “My_entry” being bounded to [0,10],
the addition “+” is green

• the result “x” is equal to [100,110]

• Due to previous computations, x+1 can NOT
overflow here, making the addition “+” green
again.

4-54

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Without DRS With DRS — 2 Oranges Removed + Return
Statement More Accurate

And the returned result is between
[min+101 max]

And the returned result is between
[101,111]

4-55

4 Emulating Your Runtime Environment

4-56

5

Preparing Source Code for
Verification

• “Stubbing” on page 5-2

• “Preparing Code for Variables” on page 5-13

• “Preparing Code for Built-In Functions” on page 5-18

• “Preparing Multitasking Code” on page 5-19

• “Highlighting Known Coding Rule Violations and Run-Time Errors” on
page 5-34

• “Verifying “Unsupported” Code” on page 5-41

5 Preparing Source Code for Verification

Stubbing

In this section...

“Stubbing Overview” on page 5-2

“Manual vs. Automatic Stubbing” on page 5-2

“Adding Precision Constraints Using Stubs” on page 5-6

“Default and Alternative Behavior for Stubbing (PURE and WORST)” on
page 5-7

“Function Pointer Cases” on page 5-10

“Stubbing Functions with a Variable Argument Number” on page 5-10

“Finding Bugs in _polyspace_stdstubs.c” on page 5-12

Stubbing Overview
A function stub is a small piece of code that emulates the behavior of a
missing function.

Stubs do not need to model the details of functions or procedures. They
represent only the effect that the code might have on the remainder of the
system.

Stubbing allows you to verify code before all functions are developed.

Manual vs. Automatic Stubbing
The approach you take to stubbing can have a significant impact on the speed
and precision of your verification.

In Polyspace verification, there are two types of stubs:

• Automatic stubs – When you attempt to verify code that calls an unknown
function, the software automatically creates a stub function based on the
function prototype (the function declaration). Automatic stubs do not
provide insight into the behavior of the function.

5-2

Stubbing

• Manual stubs – You create these stub functions to emulate the behavior
of the missing functions, and manually include the stub functions in the
verification with the rest of the source code.

By default, Polyspace software automatically stubs functions. However, in
some cases you may want to manually stub functions. For example, when:

• Automatic stubbing does not provide an adequate representation of the
code that it represents— both in regard to missing functions and assembly
instructions.

• The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

• You want to improve the selectivity and speed of the verification.

• You want to gain precision by restricting return values generated by
automatic stubs.

• You need to work with a function that writes to global variables.

For Example:

void main(void)
{
a=1;
b=0;
a_missing_function(&a, b);
b = 1 / a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function is commented out,
then the division would be a green "/ ". You could only achieve a red "/ "
with a manual stub.

Note Automatically generated stubs do not deinitialize variables that are
given as parameters.

5-3

5 Preparing Source Code for Verification

Deciding Which Stub Functions to Provide
In the following section, procedure_to_stub can represent either procedure or
a sequence of assembly instructions which would be automatically stubbed
in the absence of a manual stub. (For more information, refer to “Ignoring
Assembly Code” on page 5-41).

Stubs do not need to model the details of functions or procedures. They
represent only the effect that the code might have on the remainder of the
system.

Consider procedure_to_stub. If it represents,

• A timing constraint (such as a timer set/reset, a task activation, a delay, or
a counter of ticks between two precise locations in the code), then you can
stub procedure_to_stub with an empty action (void procedure(void)).
Polyspace does not need a concept of timing because the software takes
into account all possible scheduling and interleaving of concurrent
execution. Therefore, there is no need to stub functions that set or reset a
timer. Declare the variable representing time as volatile.

• An I/O access, such as to a hardware port, a sensor, a read/write of a file, a
read of an EEPROM, or a write to a volatile variable, then,

- You do not need to stub a write access. If you want to do so, stub a write
access to an empty action (void procedure(void)).

- Stub read accesses to "read all possible values (volatile)".

• A write to a global variable, you may need to consider which procedures or
functions write to procedure_to_stub and why. Do not stub the concerned
procedure_to_stub if:

- The variable is volatile.

- The variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically modelled as
though they have been started. Write a procedure_to_stub manually if:

• The variable is a regular variable read by other procedures or
functions.

5-4

Stubbing

• The variable is a read from a global variable. If you want Polyspace
software to detect that the variable is a shared variable, stub a read
access. Copy the value into a local variable.

Follow the Data Flow:

• Polyspace software uses only the C code which is provided.

• Polyspace does not need to be informed of timing constraints because all
possible sequencing is taken into account.

Example
The following example shows a header for a missing function (which might
occur, for example, if the code is a subset of a project). The missing function
copies the value of the src parameter to dest so there would be a division by
zero, a run-time error..

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a, b);
b = 1 / a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function is commented out,
then the division would be a green "/ ". You could only achieve a red "/ "
with a manual stub.

5-5

5 Preparing Source Code for Verification

Default Stubbing Manual Stubbing Function Ignored

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a,

b);
b = 1 / a;

// orange division
}

void a_missing_function
(int *x, int y;)
{ *x = y; }

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a,

b);
b = 1 / a;

// red division

void a_missing_function
(int *x, int y;)
{ }

void main(void)
{
a = 1;
b = 0;
a_missing_function(&a,

b);
b = 1 / a;

// green division

Due to the reliance on the software’s default stub, the software ignores the
assembly code and the division " /" is green. You could only achieve the red
division "/" with a manual stub.

Summary
Stub manually to gain precision by restricting return values generated by
automatic stubs, for example, when you work with a function that writes to
global variables.

Stub automatically to minimize preparation time. No run-time error is
introduced by automatic stubbing.

Adding Precision Constraints Using Stubs
You can improve the selectivity of your verification by using stubs to indicate
that some variables vary within functional ranges instead of the full range of
the considered type.

You can apply this approach to:

• Parameters passed to functions.

5-6

Stubbing

• Variables that change from one execution to another (mostly globals), for
example, calibration data or mission specific data. These variables might
be read directly within the code, or read through an API of functions.

If a function returns an integer, default automatic stubbing assumes the
function can take any value from the fullrange of the integer type. This can
lead to unproven code (orange checks) in your results. You can achieve more
precise results by providing a manual stub that provides external data that is
representative of the data expected when the code is implemented.

There are a number of ways to model such data ranges within the code. The
following table shows some approaches.

with volatile and assert with assert and without
volatile

without assert, without
volatile, without "if"

#include <assert.h>

int stub(void)

{

volatile int random;

int tmp;

tmp = random;

assert(tmp>=1 && tmp<=10);

return

#include <assert.h>

extern int other_func(void);

int stub(void)

{

int tmp;

tmp= other_func();

assert(tmp>=1 && tmp<=10);

return

}

extern int other_func(void);

int stub(void)

{

int tmp;

do {tmp= other_func();}

while (tmp<1 || tmp>10);

return tmp;

}

There is no particular advantage to any one of these approaches, except that
the assertions in the first two approaches can produce orange orange checks
in your results.

Default and Alternative Behavior for Stubbing (PURE
and WORST)
External functions are assumed to have no effect (read, write) on global
variables. Any external function for which this assumption is not valid must
be explicitly stubbed.

5-7

5 Preparing Source Code for Verification

Consider the example int f(char *);.

When verifying this function, there are three options for automatic stubbing,
as shown in the following table.

Approach Worst Case Scenario in Stub

Default automatic stubbing
int f(char *x)
{
*x = rand();
return 0;

}

pragma POLYSPACE_WORST
int f(char *x)
{
strcpy(x, "the quick
brown fox, etc.");
return &(x[2]);

}

pragma POLYSPACE_PURE
int f(char *x)
{
return strlen(x);

}

If the automatic stub does not accurately model the function using any of these
approaches, you can use manual stubbing to achieve more precise results.

Stubbing Examples

The following table provides examples of stubbing approaches.

5-8

Stubbing

Initial Prototype With pragma
POLYSPACE_PURE

With pragma
POLYSPACE_WORST

Default Automatic
Stubbing

void f1(void);
Do nothing

int f2
(int u);

Returns [-2^31,
2^31-1]

int f3
(int *u);

Returns [-2^31,
2^31-1]

Returns [-2^31,
2^31-1] and assumes
the ability to write into
(int *) u Assumes the ability to

write into *u to any
depth and returns
[-2^31, 2^31-1]

int* f4
(int u);

Returns an absolute
address (AA)

Returns AA or (int *)
u and assumes the
ability to write into
(int *) u

Returns an absolute
address

int* f5
(int *u);

Returns an absolute
address

Returns [-2^31,
2^31-1] and assumes
the ability to write into
*u, to any depth

Assumes the ability to
write into *u, to any
depth and returns an
absolute address

void f6
(void (*ptr)(int),

param2)

The function pointed to by ptr is called with a
full-range random value for the integer. Rules
for param2 are the same as the preceding rules.

void f7
(void (*ptr)(

param2)

Does nothing

Unless you use the option
permissive-stubber, this function is not
stubbed. The parameter (int *) associated
with the function pointer is too complicated for
the software to stub it, and verification stops.
You must stub this function manually.

Note If (*ptr) contains a pointer as a
parameter, it is not stubbed automatically
and with permissive-stubber, the function
pointer ptr is called with random as a
parameter.

5-9

5 Preparing Source Code for Verification

Function Pointer Cases

Function Prototype Comments

int f(
void (*ptr_ok)(int, char, float),
other_type1 other_param1);

The -permissive-stubber option is not
required.

int f(
void (*ptr_ok)(int *, char, float),
other_type1 other_param1);

The -permissive-stubber option is required
because of the “int *” parameter of the function
pointer passed as an argument.

void _reg(int);
int _seq(void *);

unsigned char bar(void){
return 0;

}

void main(void){
unsigned char x=0;
_reg(_seq(bar));

}

Both functions, “_reg” and “_seq”, are
automatically stubbed, but the Polyspace
software does not exercise the call to the “bar”
function.

The function that is a parameter is only called
in stubbed functions if the stubbed function
prototype contains a function pointer as
parameter.

Because in this example, the stubbed function
is a “void *”, it is not a function pointer.

Stubbing Functions with a Variable Argument
Number
Polyspace software can stub most vararg functions. However:

• This stubbing can generate imprecision in pointer verification.

• The stubbing causes a significant increase in complexity and in verification
time.

There are three ways that you can deal with this stubbing issue:

• Stub manually

5-10

Stubbing

• On every varargs function that you know to be pure, add a #pragma
POLYSPACE_PURE "function_1". This action reduces greatly the
complexity of pointer verification tenfold.

For example:

#pragma POLYSPACE_PURE f

void main(void) {
int x = 0;
f(&x);
assert (x == 0); // Green assertion,

//orange without use of #pragma POLYSPACE_PURE
}

• Use #define to eliminate calls to functions. #define is useful with
functions like printf that generate complexity but are not useful for
verification, because they only display a message.

For example:

#ifdef POLYSPACE
#define example_of_function(format, args...)

#else
void example_of_function(char * format, ...)

#endif
void main(void)
{
int i = 3;
example_of_function("test1 %d", i);

}

polyspace-c -D POLYSPACE

You can place this kind of line in any .c or .h file of the verification.

Note Use #define only with functions that are pure.

5-11

5 Preparing Source Code for Verification

Finding Bugs in _polyspace_stdstubs.c
By performing a selective orange review, you can sometimes find bugs in the
__polyspace__stdstubs.c file. As with other oranges in the code, some are
useless while others highlight real problems. How can you isolate the useful
oranges in the code?

There are a number of ways to detect the useful oranges:

• Create the stub file using approaches that facilitate verification. For
instance:

• Use functions that return random values instead of local volatile variables.

• Initialize char variables with a random char instead of a volatile int to
reduce the number of overflow checks.

• Define an "APPLY_CONSTRAINT()" macro. Such a function always
creates an orange check, but you can easily filter the orange check.

• View oranges manually in the __polyspace__stdstubs.c file. You see
many comments that describe where an orange is expected and why.

Read IDP checks to be come familiar with these features.

Example
The orange check in fgets() is one such check.

for (i=0; i < length; i++) /* write in s up to n-1 char */
s[i] = _polyspace_random_char();
^

IDP

This orange check is significant. It means that the verification could not
conclude that the buffer which is given as an argument to fgets() is always big
enough to contain the specified character count. The severity of the problem
highlighted depends on how the function is called in the application.

The check should not be orange unless it is highlighting a real issue (unless
fgets() is called very frequently. In that case, try using the context-sensitivity
or -inline options).

5-12

Preparing Code for Variables

Preparing Code for Variables

In this section...

“Assigning Ranges to Variables/Assert?” on page 5-13

“Checking Properties on Global Variables: Global Assert” on page 5-14

“Modeling Variable Values External to Your Application” on page 5-14

“Initializing Variables” on page 5-15

“Verifying Code with Undefined or Undeclared Variables and Functions”
on page 5-17

Assigning Ranges to Variables/Assert?

Abstract
How can I use assert in verification?

Explanation
Assert is a UNIX, Linus, and Windows macro that aborts the program if the
test performed inside the assertion proves to be false.

Assert failures are real RTEs because they lead to a processor halt. Because
of this, the verification produces checks for the assert failures. The behavior
matches the behavior exhibited during execution, because all execution
paths for unsatisfied conditions are truncated (red and then gray). You
can assume that any verification performed downstream of the assert uses
value ranges which satisfy the assert conditions.

For more information, refer to the use of volatile.

Solution
Assert can be used to constrain input variables to values within a particular
range, for example:

#include <stdlib.h>

5-13

5 Preparing Source Code for Verification

int random(void);

int return_betweens_bounds(int min, int max)
{

int ret; // ret is not initialized
ret = random(); // ret ~ [-2^31, 2^31-1]
assert ((min<=ret) && (ret<=max));
// assert is orange because the condition may or may not
// be fulfilled
// ret ~ [min, max] here because all execution paths that don't
// meet the condition are stopped
return ret;

}

Checking Properties on Global Variables: Global
Assert
The global assert mechanism works by inserting a check on each write access
to a global variable to ensure that it is the range specified.

You enable this feature using DRS globalassert mode.

For more information, see “Specifying Data Ranges for Variables and
Functions (Contextual Verification)” on page 4-34.

Modeling Variable Values External to Your
Application
There are three main considerations:

• Use of volatile variable.

• Express that the variable content can change at every new read access.

• Express that some variables are external to the application.

A volatile variable is a variable which does not respect the following axiom:

"If I write a value V in the variable X, and if I read X’s value before any other
writing to X occurs, I will get V."

5-14

Preparing Code for Variables

The value of a volatile variable is "unknown". It can be any value that can be
represented by a variable of its type, and that value can change at any time;
even between two successive memory accesses.

A volatile variable is viewed as a "permanent random" by Polyspace
verification because the value may have changed between one read access
and the next.

Note Although the volatile characteristic of a variable is also commonly used
by programmers to avoid compiler optimization, this characteristic has no
consequence for Polyspace verification.

int return_random(void)
{
volatile int random; // random ~ [-2^31, 2^31-1], although

// random is not initialized
int y;
y = 1 / random; // division and init orange because

// random ~ [-2^31, 2^31-1]
random = 100;
y = 1 / random; // division and init orange because

// random ~ [-2^31, 2^31-1]
return random; // random ~ [-2^31, 2^31-1]

}

Initializing Variables
Consider external, volatile, and absolute address variables in the following
examples.

External Variables
Polyspace verification works on the principle that a global or static external
variable could take any value within the range of its type.

extern int x;
void f(void)
int y;
y = 1 / x; // orange because x ~ [-2^31, 2^31-1]

5-15

5 Preparing Source Code for Verification

y = 1 / x; // green because x ~ [-2^31 -1] U [1, 2^31-1]

For more information on color propagation, refer to “Before You Review
Polyspace Results” on page 8-2.

For external structures containing fields of type “pointer to function”, this
principle leads to red errors in the verification results. In this case, the
resulting default behavior is that these pointers do not point to any valid
function. For meaningful results, you need to define these variables explicitly.

Volatile Variables
Polyspace verification assumes that hardware can assign a value to a volatile
variable, but will not de-initialize it. Therefore, NIV checks cannot be red.

volatile int x; // x ~ [-2^31, 2^31-1], although x has not been
initialised

• If x is a global variable, the NIV is green.

• If x is a local variable, the NIV is green if x is initialized by the code, and
orange if x has not been initialized by the code.

Absolute Addressing
The content of an absolute address is always considered to be potentially
uninitialized (NIV orange):

int y;

void f1(void) {

#define X (* ((int *)0x20000))
X = 100;
y = 1 / X; // NIV on X is orange

}

void f2(void) {
int *p = (int *)0x20000;
*p = 100;
y = 1 / *p; // NIV on *p is orange

5-16

Preparing Code for Variables

}

Verifying Code with Undefined or Undeclared
Variables and Functions
The definition and declaration of a variable are two different but related
operations.

Definition

• for a function: the body of the function has been written: int f(void)
{ return 0; }

• for a variable: a part of memory has been reserved for the variable: int
x; or extern int x=0;

When a variable is not defined, you must specify the option Continue
even with undefined global variables (-allow-undef-variable) before
you start a verification. When you specify this option, Polyspace software
considers the variable to be initialized, and to potentially have any value in
its full range (see “Initializing Variables” on page 5-15).

When a function is not defined, it is stubbed automatically.

Declaration

• for a function: the prototype: int f(void);

• for an external variable: extern int x;

A declaration provides information about the type of the function or variable.
If the function or variable is used in a file where it has not been declared,
a compilation error results.

5-17

5 Preparing Source Code for Verification

Preparing Code for Built-In Functions
Polyspace software stubs all functions that are not defined within the
verification. Polyspace provides an accurate stub for all the functions defined
in the standard libc, taking into account functional aspects of the function.

All the functions are declared in the standard list of headers, and can be
redefined using their own definitions by invalidating the associated set of
functions:

• Using D POLYSPACE_NO_STANDARD_STUBS for all functions declared in
Standard ANSI headers: assert.h, ctype.h, errno.h, locale.h, math.h,
setjmp.h (’setjmp’ and ’longjmp’ functions are partially implemented
– see <polyspace>/cinclude/__polyspace__stdstubs.c), signal.h
('signal' and 'raise' functions are partially implemented. For more
information, see <polyspace>/cinclude/__polyspace__stdstubs.c),
stdio.h, stdarg.h, stdlib.h, string.h,and time.h.

• Using D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions declared
only in strings.h, unistd.h, and fcntl.h.

These functions can be redefined and analyzed by invalidating the
associated set of functions or only the specific function using D
__polyspace_no_<function name>. For example, If you want to redefine the
fabs() function, add the D __polyspace_no_fabs directive and add the
code of your own fabs() function in a Polyspace verification.

There are five exceptions to the preceding rules. The following functions
which deal with memory allocation can not be redefined: malloc(),
calloc(), realloc(), valloc(), alloca(), __built_in_malloc() and
__built_in_alloca().

5-18

Preparing Multitasking Code

Preparing Multitasking Code

In this section...

“Polyspace Software Assumptions” on page 5-19

“Modelling Synchronous Tasks” on page 5-20

“Modelling Interruptions and Asynchronous Events, Tasks, andThreads”
on page 5-22

“Are Interruptions Maskable or Preemptive by Default?” on page 5-24

“Shared Variables” on page 5-26

“Mailboxes” on page 5-29

“Atomicity (Can an Instruction Be Interrupted by Another?)” on page 5-31

“Priorities” on page 5-33

Polyspace Software Assumptions
This section describes the default behavior of thePolyspace software. If your
code does not conform to these assumptions, before starting verification, you
must make minor modifications to the code.

The assumptions are:

• The main procedure must terminate for entry-points (or tasks) to start.

• All tasks or entry-points start after the end of the main procedure without
any predefined basis regarding the sequence, priority, or preemption. If an
entry-point is seen as dead code, it is because the main procedure contains
a red error and therefore does not terminate.

• Verification assumes that there is no atomicity, nor timing constraints.

• Only entry points with void any_name (void) as prototype are considered.

MathWorks recommends that you read this entire section before applying the
rules described. Some rules are mandatory while other rules allow you to
gain selectivity.

5-19

5 Preparing Source Code for Verification

Modelling Synchronous Tasks
In some circumstances, you must adapt your source code to allow synchronous
tasks to be taken into account.

Suppose that an application has the following behavior:

• Once every 10 ms: void tsk_10ms(void);

• Once every 30 ms: ...

• Once every 50 ms

These tasks never interrupt each other. They include no infinite loops, and
always return control to the calling context. For example:

void tsk_10ms(void)
{ do_things_and_exit();
/* it's important it returns control*/

}

However, if you specify each entry-point at launch using the option:

polyspace-c -entry-points tsk_10ms,tsk_30ms,tsk_50ms

then the results are not valid, because each task is called only once.

To address this problem, you must specify that the tasks are purely sequential
— that is, that they are functions to be called in a deterministic order. You
can do this by writing a function to call each of the tasks in the correct
sequence, and then declaring this new function as a single task entry point.

Solution 1

Write a function that calls the cyclic tasks in the right order; an exact
sequencer. This sequencer is then specified at launch time as a single task
entry point.

This solution requires knowledge of the exact sequence of events.

5-20

Preparing Multitasking Code

For example, the sequencer might be:

void one_sequential_C_function(void)
{
while (1) {
tsk_10ms();
tsk_10ms();
tsk_10ms();
tsk_30ms ();
tsk_10ms();
tsk_10ms();
tsk_50ms ();

}
}

and the associated launching command:

polyspace-c -entry-points one_sequential_C_function

Solution 2

Make an upper approximation sequencer, taking into account every
possible scheduling.

This solution is less precise but quick to code, especially for complicated
scheduling:

For example, the sequencer might be:

void upper_approx_C_sequencer(void)
{
volatile int random;
while (1) {
if (random) tsk_10ms();
if (random) tsk_30ms();
if (random) tsk_50ms();
if (random) tsk_100ms();
.....

}
}

5-21

5 Preparing Source Code for Verification

and the associated launching command:

polyspace-c -entry-points upper_approx_C_sequencer

Note If this is the only entry-point, then it can be added at the end of the
main procedure rather than specified as a task entry point.

Modelling Interruptions and Asynchronous Events,
Tasks, andThreads
You can adapt your source code to allow Polyspace software to consider both
asynchronous tasks and interruptions. For example:

void interrupt isr_1(void)
{ ... }

Without such an adaptation, interrupt service routines appear as gray (dead
code) in the Run-Time Checks perspective. The gray code indicates that this
code is not executed and is not taken into account, so all interruptions and
tasks are ignored by the verification..

The standard execution model is such that the main procedure is executed
initially. Only if the main procedure terminates and returns control (i.e. if it
is not an infinite loop and has no red errors) do the entry points start, with
all potential starting sequences being modelled automatically. You can adopt
several different approaches to implement the required adaptations.

Solution 1: Where Interrupts (ISRs) Cannot Ppreempt Each Other

If the following conditions are fulfilled:

• The interrupt functions it_1 and it_2 (say) can never interrupt each other.

• Each interrupt can be raised several times, at any time.

• The functions are returning functions, and not infinite loops.

Then these non preemptive interruptions may be grouped into a single
function, and that function declared as an entry point.

5-22

Preparing Multitasking Code

void it_1(void);
void it_2(void);

void all_interruptions_and_events(void)
{ while (1) {
if (random()) it_1();
if (random()) it_2();
... }

}

The associated launching command would be:

polyspace-c -entry-points all_interruptions_and_events

Solution 2: Where Interrupts Can Preempt Each Other

If two ISRs can each be interrupted by the other, then:

• Encapsulate each of them in a loop.

• Declare each loop as a entry point.

One approach is to replace the original file with a Polyspace version.

original_file.c
void it_1(void)
{
... return;

}

void it_2(void)
{
... return;

}

void one_task(void)
{
... return;

}

polyspace.c

5-23

5 Preparing Source Code for Verification

void polys_it_1(void)
{
while (1)

if (random())
it_1();

}

void polys_it_2(void)
{
while (1)
if (random())
it_2();

}

void polys_one_task(void)
{
while (1)
if (random())
one_task();

}

The associated launching command would be:

polyspace-c -entry-points polys_it_1,polys_it_2,polys_one_task

Are Interruptions Maskable or Preemptive by
Default?
For user interruptions, no implicit critical section is defined: you must write
all of them manually.

Sometimes, an application which includes interrupts has a critical section
written into its main entry point, but shared data is still flagged as
unprotected.

This occurs because Polyspace verification does not distinguish between
interrupt service routines and tasks. If you specify an interrupt to be a
"-entry-points" entry point, it has the same priority level as the other
procedures declared as tasks ("-entry-points" option). Because Polyspace
verification makes an upper approximation of all scheduling and all

5-24

Preparing Multitasking Code

interleaving, in this case, that includes the possibility that the ISR
might be interrupted by any other task. More paths modelled than could
happen during execution, but this has no adverse effect on of the results
obtained except that more scenarios are considered than could happen during
“real life” execution - and the shared data is not seen as being protected.

To address this, the interrupt must be embedded in a specific procedure that
uses the same critical section as the interrupt used in the main task. Then,
each time this function is called, the task will enter a critical section which
will model the behavior of a nonmaskable interruption.

Original files:

int shared_x ;

void my_main_task(void)
{
// ...
MASK_IT;
shared_x = 12;
UMASK_IT;
// ...

}
int shared_x ;

void interrupt my_real_it(void)
{ /* which is by specification unmaskable */
shared_x = 100;

}

Additional C files required by the verification:

extern void my_real_it(void); // declaration required

#define MASK_IT pst_mask_it()
#define UMASK_IT pst_unmask_it()

void pst_mask_it(void); // functions to model critical sections
void pst_unmask_it(void); //

5-25

5 Preparing Source Code for Verification

void other_task (void)
{

MASK_IT;
my_real_it();
UMASK_IT;

}

The associated launch command:

polyspace-c \
-D interrupt= \
-entry-points my_main_task,other_task \
-critical-section-begin "pst_mask_it:table" \
-critical-section-end "pst_unmask_it:table"

Shared Variables
When you launch Polyspace without any options, all tasks are examined as
though concurrent and with no assumptions about priorities, sequence order,
or timing. Shared variables in this context are considered unprotected, and
so are shown as orange in the variable dictionary.

The software uses the following explicit protection mechanisms to protect
the variables:

• Critical section

• Mutual exclusion

• “Critical Sections” on page 5-26

• “Mutual Exclusion” on page 5-28

• “Semaphores” on page 5-29

Critical Sections
This is the most common protection mechanism found in applications, and is
simple to represent in Polyspace software:

5-26

Preparing Multitasking Code

• If one entry-point makes a call to a particular critical section, all other
entry-points are blocked on the "critical-section-begin" function call until
the originating entry-point calls the "critical-section-end" function.

• The code between two critical sections is not atomic.

• The code is a binary semaphore, so there is only one token per label (CS1 in
the following example). Unlike many implementations of semaphores, it is
not a decrementing counter that can keep track of a number of attempted
accesses.

Consider the following example:

Original Code

void proc1(void)
{
MASK_IT;
x = 12; // X is protected
y = 100;
UMASK_IT;

}
void proc2(void)
{
MASK_IT;
x = 11; // X is protected
UMASK_IT;
y = 101; // Y is not protected

}

File Replacing the Original Include File

void begin_cs(void);
void end_cs(void);
#define MASK_IT begin_cs()
#define UMASK_IT end_cs()

Command Line to Launch Polyspace Verification

polyspace-c \
-entry-point proc1,proc2 \
-critical-section-begin"begin_cs:label_1" \

5-27

5 Preparing Source Code for Verification

-critical-section-end"end_cs:label_1"

Mutual Exclusion
You can implement mutual exclusion between tasks or interrupts while
preparing to launch verification.

Suppose there are entry-points which never overlap each other, and that
variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time, you
may want the verification to take that into account. Consider the following
example:

These entry points cannot overlap:

• t1 and t3

• t2, t3 and t4

These entry-points can overlap:

• t1 and t2

• t1 and t4

Before launching verification, the names of mutually exclusive entry-points
are placed on a single line:

polyspace-c -temporal-exclusion-file myExclusions.txt
-entry-points t1,t2,t3,t4

The file myExclusions.txt is also required in the current folder. This file
contains:

t1 t3
t2 t3 t4

5-28

Preparing Multitasking Code

Semaphores
Although you can implement the code in C, verification cannot take into
account a semaphore system call. However, you can use critical sections to
model the behavior of semaphores.

Mailboxes
Suppose that an application has several tasks, some of which post messages
in a mailbox while other tasks read the messages asynchronously.

This communication mechanism is possible because the OS libraries provide
send and receive procedures. The source files will be unavailable because
the procedures are part of the OS libraries, but the mechanism needs to be
modelled for meaningful verification.

By default, the verification automatically stubs the missing OS send and
receive procedures. The stub exhibits the following behavior:

• For send (char *buffer, int length), the content of the buffer is written only
when the procedure is called.

• For receive (char *buffer, int *length), each element of the buffer contains
the full range of values appropriate to that data type.

You can use this mechanism and other mechanisms, with different levels
of precision.

Let Polyspace software stub
automatically

• Quick and easy to code.

• imprecise because there is no
direct connection between a
mailbox sender and receiver. That
means that even if the sender is
only submitting data within a
small range, the full data range
appropriate for the type or types
are for the receiver data.

Provide a real mailbox mechanism • Costly (time consuming) to
implement.

• Can introduce errors in the stubs.

5-29

5 Preparing Source Code for Verification

• Provides little additional benefit
when compared to the upper
approximation solution.

Provide an upper approximation
of the mailbox

Models the mechanism so that new
read from the mailbox reads one of
the recently posted messages, but
not necessarily the last message.

• Quick and easy to code.

• gives precise results

Consider the following detailed implementation of the upper approximation
solution:

polyspace_mailboxes.h

typedef struct _r {
int length;
char content[100];

} MESSAGE;
extern MESSAGE mailbox;
void send(MESSAGE * msg);
void receive(MESSAGE *msg);

polyspace_mailboxes.c

#include "polyspace_mailboxes.h"

MESSAGE mailbox;

void send(MESSAGE * msg)
{
volatile int test;
if (test) mailbox = *msg;
// a potential write to the mailbox

}

void receive(MESSAGE *msg)
{

5-30

Preparing Multitasking Code

*msg = mailbox;
}

Original code

#include "polyspace_mailboxes.h"

void t1(void)
{
MESSAGE msg_to_send;
int i;
for (i=0; i<100; i++)
msg_to_send.content[i] = i;

msg_to_send.length = 100;
send(&msg_to_send);

}
void t2(void)
{
MESSAGE msg_to_read;
receive (&msg_to_read);

}

The verification then proceeds on the assumption that each new read from the
mailbox reads a message, but not necessarily the last message.

The associated launching command is:

polyspace-c -entry-points t1,t2

Atomicity (Can an Instruction Be Interrupted by
Another?)
Atomic: In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity: In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or none are.

Instructional decomposition

5-31

5 Preparing Source Code for Verification

Polyspace verification does not take into account either CPU instruction
decomposition or timing considerations.

Polyspace verification assumes that instructions are never atomic except in
the case of read and write instructions. Polyspace verification makes an
upper approximation of all scheduling and all interleaving. There
are more paths modelled than could be implemented during execution, but
given that all possible paths are always analyzed, this has no adverse
effect on of the results.

Consider a 16–bit target that can manipulate a 32–bit type (an int, for
example). In this case, the CPU needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value
of 0x0000. Now suppose 0xFF55 is written it. If the operation is not atomic
it could be interrupted by another instruction in the middle of the write
operation.

• Task 1: Writes 0xFF55 to x.

• Task 2: Interrupts task 1. Depending on the timing, the value of x could be
either 0xFF00, 0x0055 or 0xFF55.

Polyspace verification considers write/read instructions atomic, so task 2
can only read 0xFF55, even if X is not protected (see “Shared Variables”
on page 5-26).

Critical sections

In terms of critical sections, Polyspace does not model the concept of
atomicity. A critical section guarantees only that once the function associated
with -critical-section-begin is called, any other function making use of the
same label is blocked. All other functions can still continue to run, even if
somewhere else in another task a critical section has been started.

Polyspace verification of Runtime Errors (RTEs) supposes that there was
no conflict when writing the shared variables. If a shared variable is not
protected, the RTE verification is complete and correct.

More information is available in “Critical Sections” on page 5-26.

5-32

Preparing Multitasking Code

Priorities
Priorities are not taken into account by Polyspace verification. However, the
timing implications of software execution are not relevant to the verification,
which is the primary reason for implementing software task prioritization. In
addition, priority inversion issues can mean that the software cannot assume
that priorities can protect shared variables. For that reason, Polyspace
software makes no such assumption.

While there is no capability to specify differing task priorities, all priorities
are taken into account because the default behavior of the software assumes
that:

• All task entry points (as defined with the option -entry-points) start
potentially at the same time;

• The task entry points can interrupt each other in any order, no matter
the sequence of instructions. Therefore, all possible interruptions are
accounted for, in addition to some interruptions which do not actually occur.

If you have two tasks, t1 and t2, in which t1 has higher priority than t2,
use polyspace-c -entry-points t1,t2.

• t1 interrupts t2 at any stage of t2, which models the behavior at execution
time.

• t2 interrupts t1 at any stage of t1, which models a behavior which (ignoring
priority inversion) would never take place during execution. Polyspace
verification has made an upper approximation of all scheduling and
all interleaving. There are more paths modelled than could happen
during execution, but this has no adverse effect on the results.

5-33

5 Preparing Source Code for Verification

Highlighting Known Coding Rule Violations and Run-Time
Errors

In this section...

“Annotating Code to Indicate Known Coding Rule Violations” on page 5-34

“Annotating Code to Indicate Known Run-Time Errors” on page 5-37

Annotating Code to Indicate Known Coding Rule
Violations
You can place comments in your code that inform Polyspace software of
known or acceptable coding rule violations. The software uses the comments
to highlight, in the Coding Rules perspective, errors or warnings related to
the coding rule violations. Using this functionality, you can:

• Hide known coding rule violations while analyzing new coding rule
violations.

• Inform other users of known coding rule violations.

Annotate your code before running a verification:

1 Open your source file using a text editor.

2 Locate the code that violates a coding rule.

3 Insert the required comment.

See also “Syntax for Coding Rule Violations” on page 5-36 .

5-34

Highlighting Known Coding Rule Violations and Run-Time Errors

Note Instead of typing the full syntax of the annotation, you can copy
an annotation template from the Coding Rules perspective, paste it into
your source code, and modify the template to comment the violation. To
copy the annotation template, right-click any violation in the Coding Rules
perspective and select Add Pre-Justification to Clipboard.

4 Save your file.

5 Start the verification. The software produces a warning if your comments
do not conform to the prescribed syntax, and they do not appear in the
Coding Rules perspective.

When the verification is complete, or stops because of a compilation error, you
can view all coding rule violations in the Coding Rules perspective.

In the Classification, Status and Comment columns, the information that
you provide within your code comments is now visible. In addition, in the
Justified column , the check box is selected.

5-35

5 Preparing Source Code for Verification

To hide coding rule violations that you annotate, select the Hide justified
violated rules check box.

Syntax for Coding Rule Violations
To apply comments to a single line of code, use the following syntax:

/* polyspace<MISRA-C:Rule1[,Rule2] : [Classification] :
[Status] >
[Additional text] */

where

• Square brackets [] indicates optional information.

• Rule1,Rule2, are rules (for example, 10.3, 11.5), which are defined by
your MISRA-C rules file (for example, misra-rules.msr). You can also
specify ALL, which covers every coding rule.

• Classification, for example, High and Low, allows you to categorize the
seriousness of the coding rule violation with a predefined classification. To
see the complete list of predefined classifications, in the Preferences dialog
box, click the Review Statuses tab.

• Status allows you to categorize the coding rule violation with either a
predefined status, or a status that you define in the Preferences dialog box,
through the Review Statuses tab.

• Additional text appears in the Comment column of the Coding Rules
perspective. Use this text to provide information about the coding rule
violations.

The software applies the comments, which are case-insensitive, to the first
non-commented line of C code that follows the annotation.

For example:

/* polyspace<MISRA-C:6.3 : Low : Justify with annotations> Known issu */

5-36

Highlighting Known Coding Rule Violations and Run-Time Errors

Note Instead of typing the full syntax of the annotation, you can copy an
annotation template from the Run-Time Checks perspective, paste it into
your source code, and modify the template to comment the check. To copy the
annotation template, right-click any check in the Source pane and select Add
Pre-Justification to Clipboard.

Syntax for Sections of Code
To apply comments to a section of code, use the following syntax:

/* polyspace:begin<MISRA-C:Rule1[,Rule2] :
[Classification] : [Status] >
[Additional text] */

... Code section ...

/* polyspace:end<MISRA-C:Rule1[,Rule2] : [Classification] : [Status] >
[Additional text] */

Annotating Code to Indicate Known Run-Time Errors
You can place comments in your code that inform Polyspace software of
known run-time errors. Through the use of these comments, you can:

• Highlight run-time errors:

- Identified in previous verifications.

- That are not significant.

• Categorize previously reviewed run-time errors.

Therefore, during your analysis of verification results, you can disregard
these known errors and focus on new errors.

Annotate your code before running a verification:

1 Open your source file using a text editor.

2 Locate the code that produces a run-time error.

5-37

5 Preparing Source Code for Verification

3 Insert the required comment.

See also “Syntax for Run-Time Errors” on page 5-39.

Note Instead of typing the full syntax of the annotation, you can copy an
annotation template from the Run-Time Checks perspective, paste it into
your source code, and modify the template to comment the check. To copy
the annotation template, right-click any check in the Source pane and
select Add Pre-Justification to Clipboard.

4 Save your file.

5 Start the verification. The software produces a warning if your comments
do not conform to the prescribed syntax, and they do not appear in the
Run-Time Checks perspective.

When the verification is complete, open the Run-Time Checks perspective.
You see run-time errors in the procedural entities view.

In the Classification, Status, and Comment columns, the information
that you provide within your code comments is now visible. In addition, in
the Justified column , the check box is selected.

5-38

Highlighting Known Coding Rule Violations and Run-Time Errors

Syntax for Run-Time Errors
To apply comments to a single line of code, use the following syntax:

/* polyspace<RTE:RTE1[,RTE2] : [Classification] : [Status] >
[Additional text] */

where,

• Square brackets [] indicate optional information.

• RTE1,RTE2,… are formal Polyspace checks, for example, OBAI, IDP, and ZDV.
You can also specify ALL, which covers every check.

• Classification, for example, High and Low, allows you to categorize
the seriousness of the issue with a predefined classification. To see the
complete list of predefined classifications, in the Preferences dialog box,
click the Review Statuses tab.

• Status allows you to categorize the run-time error with either a predefined
status, or a status that you define in the Preferences dialog box, through
the Review Statuses tab.

• Additional text appears in the Comment column of the procedural
entities view of the Run-Time Checks perspective. Use this text to provide
information about the run-time errors.

The software applies the comments, which are case-insensitive, to the first
non-commented line of C code that follows the annotation.

For example:

/* polyspace<RTE: NTC : Low : No Action Planned > Known issue */

Note Instead of typing the full syntax of the annotation, you can copy an
annotation template from the Run-Time Checks perspective, paste it into
your source code, and modify the template to comment the check. To copy the
annotation template, right-click any check in the Source pane and select Add
Pre-Justification to Clipboard.

5-39

5 Preparing Source Code for Verification

Syntax for Sections of Code
To apply comments to a section of code, use the following syntax:

/* polyspace:begin<RTE:RTE1[,RTE2] :
[Classification] : [Status] >
[Additional text] */

... Code section ...

/* polyspace:end<RTE:RTE1[,RTE2] : [Classification] : [Status] >
[Additional text] */

5-40

Verifying “Unsupported” Code

Verifying “Unsupported” Code

In this section...

“Ignoring Assembly Code” on page 5-41

“Dealing with Backward “goto” Statements” on page 5-49

“Types Promotion” on page 5-52

Ignoring Assembly Code
You can ignore assembly code during verification using the Discard
assembly code option (-discard-asm). Using this option allows you to work
with many instances of assembly code within a C application, but it is not
always a valid route to take.

Ignored assembly instructions change the behavior of the code. For example,
a write access to a shared variable can be written in assembly code. If this
write access is ignored, the verification may produce inaccurate results.

In such cases, refer to “Stubbing” on page 5-2, which applies to functions
as well as to stubbed instructions.

Polyspace verification is designed for C code only. In most cases, the option
-discard-asm combined with -asm-begin and -asm-end can be used to
instruct the verification to discard a number of assembly code constructs.

• “Example: Ignore All Statements; the Rest of the Function Remains
Unchanged” on page 5-42

• “Example: Automatic Stubbing” on page 5-44

• “Examples: Empty Body” on page 5-45

• “Example: #asm and #endasm Support” on page 5-46

• “Example: What to Do If -discard-asm Fails to Parse an asm Code Section”
on page 5-47

5-41

5 Preparing Source Code for Verification

Example: Ignore All Statements; the Rest of the Function
Remains Unchanged
Discarding assembly code by using the -discard-asm is an acceptable
approach where ignoring the assembly instructions will have no impact on
the remainder of the function.

For more information, see the “Manual versus automatic stubbing”.

int f(void)
{
asm ("% reg val; mtmsr val;");
asm("\tmove.w #$2700,sr");
asm("\ttrap #7");
asm(" stw r11,0(r3) ");
assert (1); // is green
return 1;

}

int other_ignored6(void)
{
#define A_MACRO(bus_controller_mode) \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \
__asm__ volatile("nop")
assert (1); // is green
A_MACRO(x);
assert (1); // is green
return 1;

}

int pragma_ignored(void)
{
#pragma asm
SRST

#pragma endasm
assert (1); // is green

}

5-42

Verifying “Unsupported” Code

int other_ignored2(void)
{
asm "% reg val; mtmsr val;";
asm mtmsr val;
assert (1); // is green
asm ("px = pm(0,%2); \
%0 = px1; \
%1 = px2;"
: "=d" (data_16), "=d" (data_32)
: "y" ((UI_32 pm *)ram_address):

"px");
assert (1); // is green

}

int other_ignored1(void)
{
__asm
{MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8}

assert (1); // is green
}

int GNUC_include (void)
{
extern int __P (char *__pattern, int __flags,
int (*__errfunc) (char *, int),
unsigned *__pglob) __asm__ ("glob64");
__asm__ ("rorw $8, %w0" \
: "=r" (__v) \
: "0" ((guint16) (val)));

__asm__ ("st g14,%0" : "=m" (*(AP)));
__asm("" \
: "=r" (__t.c) \
: "0" ((((union { int i, j; } *) (AP))++)->i));

assert (1); // is green
return (int) 3 __asm__("% reg val");

5-43

5 Preparing Source Code for Verification

}

int other_ignored3(void)
{
__asm {ldab 0xffff,0;trapdis;};

__asm {ldab 0xffff,1;trapdis;};
assert (1); // is green
__asm__ ("% reg val");
__asm__ ("mtmsr val");
assert (1); // is green
return 2;

}

int other_ignored4(void)
{
asm {
port_in: /* byte = port_in(port); */
mov EAX, 0
mov EDX, 4[ESP]
in AL, DX
ret
port_out: /* port_out(byte,port); */

mov EDX, 8[ESP]
mov EAX, 4[ESP]
out DX, AL
ret }

assert (1); // is green
}

Example: Automatic Stubbing
When a function is preceded by asm, it is stubbed automatically, even if a
body is defined.

asm int m(int tt);

You must use the -discard-asm option.

5-44

Verifying “Unsupported” Code

Examples: Empty Body
Using the option, #pragma inline_asm(list of functions), has the same
effect.

You must use the -discard-asm option.

pragma inline_asm(ex1, ex2) // the 2 functions ex1 and ex2 will be
//stubbed, even if their body is defined

int ex1(void)
{

% reg val;
mtmsr val;
return 3; // is ignored

};

int ex2(void)
{

% reg val;
mtmsr val;
assert (1); // is ignored
return 3;

};

#pragma inline_asm(ex3) // the definition of ex3 is ignored

int ex3(void)
{

% reg val;
mtmsr val; // is ignored
return 3;

};

asm int h(int tt) // using the qualifier asm is equivalent
// to #pragma inline_asm

{
% reg val; // is ignored
mtmsr val; // is ignored

5-45

5 Preparing Source Code for Verification

return 3; // is ignored
};

void f(void) {
int x;

x = ex1(); // ex1 is stubbed : x is full-range
x = ex2(); // x is full-range
x = ex3(); // x is full-range
x = h(3); // x is full-range

}

For more information, see “Stubbing” on page 5-2.

Example: #asm and #endasm Support
Using #asm and #endasm allows fragments of assembly code to be disregarded,
regardless of whether or not you use the -discard-asm.

Consider the following example.

void test(void)
{
#asm
mov _as:pe, reg
jre _nop

#endasm
int r;
r=0;
r++;

}

Explanation

By default, using #asm and #endasm requires using the -asm-begin and
-asm-end options. The options to enable this feature are accessible through
the Project Manager perspective or in batch mode.

When launching Polyspace verification in batch mode, use this syntax:

5-46

Verifying “Unsupported” Code

polyspace-c -asm-begin asm -asm-end endasm

To enable this option using the Project Manager perspective:

1 In the Configuration pane of the Project Manager perspective, select
Compliance with standards > Embedded assembler.

2 Select Handle #pragma asm.endasm directives.

The Handle #pragma asm/endasm directives dialog box opens.

3 Select Add line.

4 In the #pragma asm list [-asm-begin] column, enter asm.

5 In the #pragma enasm list [-asm-end] column, enter endasm.

6 Click Ok.

Example: What to Do If -discard-asm Fails to Parse an asm
Code Section
Occasionally, the -discard-asm option does not deal with a particular
assembly code construction, particularly when the code fragment is
compiler-specific.

5-47

5 Preparing Source Code for Verification

Note Consider using the -asm-begin and -asm-end options instead of the
following approach.

1 int x=12;
2
3 void f(void)
4 {
5 #pragma will_be_ignored
6 x =0;
7 x= 1/x; // no color is displayed
8 // not even C code
9 #pragma was_ignored
10 x++;
11 x=15;
12 }
13
14 void main (void)
15 {
16 int y;
17 f();
18 y = 1/x + 1 / (x-15); // Red ZDV, x is equal to 15
19
20 }

As shown in this example, any text or code placed between the two #pragma
statements is ignored by the verification. This allows any unsupported
construction to be ignored without changing the meaning of the original code.

The options to enable this feature are accessible through the Project Manager
perspective or in batch mode.

To enable this option in batch mode, enter the following command:

polyspace-c -asm-begin will_be_ignored -asm-end was_ignored

To enable this option using the Project Manager perspective:

5-48

Verifying “Unsupported” Code

1 In the Configuration pane of the Project Manager perspective, select
Compliance with standards > Embedded assembler.

2 Select Handle #pragma asm.endasm directives.

The Handle #pragma asm/endasm directives dialog box opens.

3 Select Add line.

4 In the #pragma asm list [-asm-begin] column, enter will_be_ignored.

5 In the #pragma enasm list [-asm-end] column, enter was_ignored.

6 Click Ok.

Dealing with Backward “goto” Statements
Polyspace verification is not designed to support backward “goto” statements.
However, macros provide a solution. Verifications that includes backward
“goto” statements stop at an early stage, and a message appears saying that
backward “goto” statements are not supported.

Macros provided with the Polyspace software can work around this limitation
as long as the “goto” labels and jump instructions are in the same
code block (and in the same scope).

5-49

5 Preparing Source Code for Verification

To insert these macros into the code:

1 Edit the C file containing the “goto” statements.

2 Add #include pstgoto.h" at the beginning of the file (located in
Polyspace_Install/cinclude).

3 Go to the beginning of the block containing the “goto” statements.

4 Insert the USE_1_GOTO(<tag>) macro call after the variable declarations
(local to the block).

5 Insert the EXIT_1_GOTO(<tag>) macro call before the end of this same
block (take care with the closing bracket "}").

6 Replace "goto <tag>" with "GOTO(<tag>)".

For example, the following code would cause a verification to
terminate:

{
/* local variable declarations */
int x; ...
/* Instructions */
...
label1:
...
goto label1
...
}

You could address this problem as follows:

/* the pstgoto.h file is provided by Polyspace and its path */
{
/* local variable declarations */
int x; ...
USE_1_GOTO(label1);
/* Instructions */
...
label1:

5-50

Verifying “Unsupported” Code

...
GOTO(label1);
...
EXIT_1_GOTO(label1);
}

The code block may contain many instances of backward “goto” statements.
Using matching USE_n_GOTO() and EXIT_n_GOTO() statements addresses this
issue,(for example, USE_2_GOTO(), USE_3_GOTO(), etc.)

Note You must copy pstgoto.h from Polyspace_Install/cinclude, and
add it to the list of include folders (-I).

The code block may also use several different tags. You can use multiple “tag”
parameters to address these situations. For example, use:

USE_n_GOTO (<tag 1>, <tag 2>, ..., <tag n>);
EXIT_n_GOTO(<tag 1>, <tag 2>, ..., <tag n>);

Consider the following example.

Original Code Modified Code for Verification

{
.

Reset:
.

{

{
if (X)
goto Reset;

}

{
if (Y)
goto Reset;

{
USE_1_GOTO(Reset);

Reset:

{

{
if (X)
GOTO(Reset);

}

{
if (Y)
GOTO(Reset);

5-51

5 Preparing Source Code for Verification

Original Code Modified Code for Verification

}
}

}
}
EXIT_1_GOTO(Reset);

Types Promotion

• “Unsigned Integers Promoted to Signed Integers” on page 5-52

• “What are the Promotions Rules in Operators?” on page 5-53

• “Example” on page 5-53

Unsigned Integers Promoted to Signed Integers
You need to understand the circumstances under which signed integers are
promoted to unsigned.

For example, the execution of the following code would produce an assertion
failure and a core dump.

#include <assert.h>
int f1(void) {
int x = -2;
unsigned int y = 5;
assert(x <= y);

}

Implicit promotion explains this behavior. In this example, x <= y is
implicitly:

((unsigned int) x) <= y /* implicit promotion since y is unsigned */

A negative cast into unsigned gives a large value. This value can never be <=
5, so the assertion can never hold true.

In this second example, consider the range of possible values for x:

void f2(void)
volatile int random;

5-52

Verifying “Unsupported” Code

unsigned int y = 7;
int x = random;
assert (x >= -7 && x <= y);

assert (x>=0 && x<=7);

The first assertion is orange; it may cause an assert failure. However, given
that the range of x after the first assertion is not [-7 .. 7], but rather [0 .. 7
], the second assertion would hold true.

What are the Promotions Rules in Operators?
Familiarity with the rules applying to the standard operators of the C
language helps you to analyze those orange and red checks which relate to
overflows on type operations. Those rules are:

• Unary operators operate on the type of the operand.

• Shifts operate on the type of the left operand.

• Boolean operators operate on Booleans.

• Other binary operators operate on a common type. If the types of the two
operands are different, they are promoted to the first common type which
can represent both of them.

• Be careful of constant types.

• Be careful when verifying any operation between variables of different
types without an explicit cast.

Example
Consider the integral promotion aspect of the ANSI-C standard (see 6.2.1 in
ISO/IEC 9899:1990). On arithmetic operators like +, -, *, % and / , an integral
promotion is applied on both operands. For verification, that can imply an
OVFL or a UNFL orange check.

2 extern char random_char(void);
3 extern int random_int(void);
4
5 void main(void)
6 {

5-53

5 Preparing Source Code for Verification

7 char c1 = random_char();
8 char c2 = random_char();
9 int i1 = random_int();
10 int i2 = random_int();
11
12 i1 = i1 + i2; // A typical OVFL/UNFL on a + operator
13 c1 = c1 + c2; // An OVFL/UNFL warning on the c1
14 // assignment [from int32 to int8]
15 }

Unlike the addition of two integers at line 12, an implicit promotion is used in
the addition of the two chars at line 13. Consider this second “equivalence”
example.

2 extern char random_char(void);
3
4 void main(void)
5 {
6 char c1 = random_char();
7 char c2 = random_char();
8
9 c1 = (char)((int)c1 + (int)c2); // Warning OVFL: due to
10 // integral promotion
11 }

An orange check represents a warning of a potential overflow (OVFL),
generated on the (char) cast [from int32 to int8]. A green check represents
a verification that there is no possibility of any overflow (OVFL) on the
+operator.

Integral promotion requires that the abstract machine must promote the type
of each variable to the integral target size before realizing the arithmetic
operation and subsequently adjusting the assignment type. See the preceding
equivalence example of a simple addition of two char.

Integral promotion respects the size hierarchy of basic types:

• char (signed or not) and signed short are promoted to int.

5-54

Verifying “Unsupported” Code

• unsigned short is promoted to int only if int can represent all the possible
values of an unsigned short. If that is not the case (because of a 16-bit
target, for example) then unsigned short is promoted to unsigned int.

• Other types such as(un)signed int, (un)signed long int, and (un)signed
long long int promote themselves.

5-55

5 Preparing Source Code for Verification

5-56

6

Running a Verification

• “Before Running Verification” on page 6-2

• “Running Verifications on Polyspace Server” on page 6-9

• “Running Verifications on Polyspace Client” on page 6-30

• “Running Verifications from Command Line” on page 6-36

6 Running a Verification

Before Running Verification

In this section...

“Types of Verification” on page 6-2

“Specifying Source Files to Verify” on page 6-2

“Specifying Results Folder” on page 6-3

“Specifying Analysis Options Configuration” on page 6-4

“Checking for Compilation Problems” on page 6-5

Types of Verification
You can run a verification on a server or a client.

Use... For...

Server • Best performance

• Large files (more than 800 lines of code including comments)

• Multitasking

Client • An alternative to the server when the server is busy

• Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

Specifying Source Files to Verify
Each Polyspace project can contain multiple verifications. Each of these
verifications can analyze a specific set of source files using a specific set of
analysis options. Therefore, before you launch a verification, you must specify
which files in your project that you want to verify.

To copy source files to a verification:

6-2

Before Running Verification

1 Open the project containing the files you want to verify.

2 In the Project Browser Source tree, select the source files you want to verify.

3 Right click any selected file, and select Copy Source File
to > Verification_(#).

The selected source files appear in the Source tree of the verification.

Note You can also drag source files from a project into the Source folder
of a verification.

Specifying Results Folder
Each Verification in the Project Browser can contain multiple result folders.
This allows you to save results from multiple verifications of the same source
files, either to compare results using different analysis options, or to track
verification results over time as your source files are revised.

6-3

6 Running a Verification

By default, Polyspace software creates a new result folder for each verification.
However, if you want to reuse an existing result folder, you can select that
folder before launching verification. For example, you may want to reuse
a result folder if you stopped a verification before it completed, and are
restarting the same verification.

Caution If you specify an existing result folder, all results in that folder are
deleted when you start a new verification.

To specify the result folder for a verification:

1 In the Project Browser select the verification you want to run.

2 In the Project Manager toolbar, clear the Create a new result folder
check box.

3 In the Use result folder drop-down menu, select the folder you want to
use.

When you launch verification, the software saves verification results to the
selected result folder.

Specifying Analysis Options Configuration
Each Verification in the Project Browser can contain multiple configurations,
each containing a specific set of analysis options. This allows you to verify
the same source files multiple times using different analysis options for each
verification.

If you have created multiple configurations, you must choose which
configuration to use before launching a verification.

To specify the configuration to use for a verification:

6-4

Before Running Verification

1 In the Project Browser select the verification you want to run.

2 In the Configuration folder of the verification, right click the configuration
you want to use, and select Set As Active Configuration.

When you launch verification, the software uses the specified analysis
options configuration.

Checking for Compilation Problems
The Compilation Assistant allows you to check your project for compilation
problems before launching a verification. When the Compilation Assistant
detects an error, it reports the problem and suggests possible solutions.

To check your project for compilation problems:

1 In the Compilation Assistant pane, click Check Compilation.

6-5

6 Running a Verification

The software compiles your code and checks for errors, and reports the
results in the Output Summary.

2 Select the Suggestion/Remark column to see a list of possible solutions
for the problem.

6-6

Before Running Verification

In this example, you can either add the missing include file, or set an option
that will attempt to compile the code without the missing include file.

3 Select Apply to set the selected option for your project.

The software automatically sets the option, and displays it in the
Compilation Assistant Active Settings table.

4 Select Add to add suggested include folders to your project.

The Add Source Files and Include Folders dialog box opens, allowing you
to add additional include folders.

When you have addressed all compilation problems, the Compilation Assistant
displays the message Compilation succeeded in the Output Summary pane.

6-7

6 Running a Verification

6-8

Running Verifications on Polyspace® Server

Running Verifications on Polyspace Server

In this section...

“Starting Server Verification” on page 6-9

“What Happens When You Run Verification” on page 6-10

“Running Verification Unit-by-Unit” on page 6-11

“Managing Verification Jobs Using the Polyspace Queue Manager” on page
6-13

“Monitoring Progress of Server Verification” on page 6-15

“Viewing Verification Log File on Server” on page 6-20

“Stopping Server Verification Before It Completes” on page 6-21

“Removing Verification Jobs from Server Before They Run” on page 6-22

“Changing Order of Verification Jobs in Server Queue” on page 6-23

“Purging Server Queue” on page 6-24

“Changing Queue Manager Password” on page 6-26

“Sharing Server Verifications Between Users” on page 6-27

Starting Server Verification
Most verification jobs run on the Polyspace server. Running verifications on a
server provides optimal performance.

To start a verification that runs on a server:

1 In the Project Browser, specify the source files you want to include in the
verification. For more information, see “Specifying Source Files to Verify”
on page 6-2.

2 Select the Send to Polyspace Server check box in the General Analysis
options.

6-9

6 Running a Verification

3 Click the Run button on the Project Manager toolbar.

The verification starts. For information on the verification process, see
“What Happens When You Run Verification” on page 6-10.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

What Happens When You Run Verification
The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because Polyspace
software is independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI® standards.

6-10

Running Verifications on Polyspace® Server

2 Generating a main if the Polyspace software does not find a main and you
have selected the Generate a Main option. For more information about
generating a main, see “Main Generator Behavior for Polyspace Software”
in the Polyspace Products for C Reference.

3 Analyzing the code for run-time errors and generating color-coded results.

The compile phase of the verification runs on the client. When the compile
phase is complete:

• You see the message queued on server at the bottom of the Project
Manager perspective. This message indicates that the part of the
verification that takes place on the client is complete. The rest of the
verification runs on the server.

• A message in the Output Summary window gives you the identification
number (Analysis ID) for the verification. For this verification, the
identification number is 1.

Running Verification Unit-by-Unit
When launching a server verification, you can create a separate verification
jobs for each source file in the project. Each file is compiled, sent to the
Polyspace Server, and verified individually. Verification results can then be
viewed for the entire project, or for individual units.

To run a unit-by-unit verification:

1 In the Project Manager General Analysis options, select the Send to
Polyspace Server check box

6-11

6 Running a Verification

2 In the Analysis options, expand Polyspace inner settings.

3 Select the Run a verification unit by unit check box.

4 Expand the Run a verification unit by unit item.

5 Click the button to the right of the Unit by unit common source
option.

The Unit by unit common source dialog box opens.

6-12

Running Verifications on Polyspace® Server

6 Click the folder icon .

The Select a file to include dialog box appears.

7 Select the common files to include with each unit verification.

These files are compiled once, and then linked to each unit before
verification. Functions not included in this list are stubbed.

8 Click Ok.

9 Click Run.

Each file in the project is compiled, sent to the Polyspace Server, and
verified individually as part of a verification group for the project.

Managing Verification Jobs Using the Polyspace
Queue Manager
You manage all server verifications using the Polyspace Queue Manager (also
called the Polyspace Spooler). The Polyspace Queue Manager allows you to
move jobs within the queue, remove jobs, monitor the progress of individual
verifications, and download results.

To manage verification jobs on the Polyspace Server:

6-13

6 Running a Verification

1 Double-click the Polyspace Spooler icon:

The Polyspace Queue Manager Interface opens.

2 Right-click any job in the queue to open the context menu for that
verification.

6-14

Running Verifications on Polyspace® Server

3 Select the appropriate option from the context menu.

Tip You can also open the Polyspace Queue Manager Interface by clicking

the Polyspace Queue Manager icon in the Polyspace Verification
Environment toolbar.

Monitoring Progress of Server Verification
There are two ways to monitor the progress of a verification:

• Using the Project Manager – allows you to follow the progress of the
verifications you submitted to the server, as well as client verifications.

• Using the Queue Manager (Spooler) – allows you to follow the progress
of any verification job in the server queue.

Monitoring Progress Using Project Manager
You can monitor the progress of your verification by viewing the progress
monitor and logs at the bottom of the Project Manager perspective.

The progress monitor highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

6-15

6 Running a Verification

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

3 Click the Refresh button to update the display as the verification
progresses.

4 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

Note You can search the logs. In the Search in the log box, enter a
search term and click the left arrows to search backward or the right
arrows to search forward.

Monitoring Progress Using Queue Manager
You monitor the progress of the verification using the Polyspace Queue
Manager (also called the Spooler).

To monitor the verification of Example_Project:

1 Double-click the Polyspace Spooler icon on the desktop.

The Polyspace Queue Manager Interface opens.

6-16

Running Verifications on Polyspace® Server

Tip You can also open the Polyspace Queue Manager Interface by

clicking the Polyspace Queue Manager icon on the Run-Time Checks
perspective toolbar.

2 Point anywhere in the row for ID 1.

3 Right-click to open the context menu for this verification.

4 Select Follow Progress from the context menu.

6-17

6 Running a Verification

The Progress Monitor opens.

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The progress monitor
highlights the current phase in blue and displays the amount of time and
completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

6-18

Running Verifications on Polyspace® Server

• Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search
in the log box and clicking the left arrows to search backward or the
right arrows to search forward.

• Click the Verification Statistics tab to display statistics, such
as analysis options, stubbed functions, and the verification checks
performed.

• Click the Refresh button to update the display as the verification
progresses.

• Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

Note You can search the logs. In the Search in the log box, enter a
search term and click the left arrows to search backward or the right
arrows to search forward.

5 Select File > Quit to close the progress window.

6 Wait for the verification to finish.

When the verification is complete, the status in the Polyspace Queue
Manager Interface changes from running to completed.

6-19

6 Running a Verification

Viewing Verification Log File on Server
You can view the log file of a server verification using the Polyspace Queue
Manager.

To view a log file on the server:

1 Double-click the Polyspace Spooler icon:

The Polyspace Queue Manager Interface opens.

2 Right-click the job you want to monitor, and select View log file.

A window opens displaying the last one-hundred lines of the verification.

6-20

Running Verifications on Polyspace® Server

3 Click Close to close the window.

Stopping Server Verification Before It Completes
You can stop a verification running on the server before it completes using
the Polyspace Queue Manager. If you stop the verification, results will be
incomplete, and if you start another verification, the verification starts over
from the beginning.

To stop a server verification:

1 Double-click the Polyspace Spooler icon:

6-21

6 Running a Verification

The Polyspace Queue Manager Interface opens.

2 Right-click the job you want to monitor, and select one of the following
options:

Right-click the job you want to monitor, and select one of the following
options:

• Stop — Stops a unit-by-unit verification job without removing it. The
status of the job changes from “running” to “aborted”. All jobs in the
unit-by-unit verification group remain in the queue, and other jobs in
the group will continue to run.

• Stop and download results— Stops the verification job immediately
and downloads any preliminary results. The status of the verification
changes from “running” to “aborted”. The verification remains in the
queue.

• Stop and remove from queue — Stops the verification immediately
and removes it from the queue. If the job is part of a unit-by-unit
verification group, the entire verification is removed, not just the
individual job.

Removing Verification Jobs from Server Before They
Run
If your job is in the server queue, but has not yet started running, you can
remove it from the queue using the Polyspace Queue Manager.

6-22

Running Verifications on Polyspace® Server

Note If the job has started running, you must stop the verification before you
can remove the job (see “Stopping Server Verification Before It Completes”
on page 6-21). Once you have aborted a verification, you can remove it from
the queue.

To remove a job from the server queue:

1 Double-click the Polyspace Spooler icon:

The Polyspace Queue Manager Interface opens.

2 Right-click the job you want to remove, and select Remove from queue.

The job is removed from the queue.

Changing Order of Verification Jobs in Server Queue
You can change the priority of verification jobs in the server queue to
determine the order in which the jobs run.

To move a job within the server queue:

6-23

6 Running a Verification

1 Double-click the Polyspace Spooler icon:

The Polyspace Queue Manager Interface opens.

2 Right-click the job you want to remove, and selectMove down in queue.

The job is moved down in the queue.

3 Repeat this process to reorder the jobs as necessary.

Note You can move unit-by-unit verification groups in the queue, as well as
individual jobs within a single unit-by-unit verification group. However, you
can not move individual unit-by-unit verification jobs outside of the group.

Purging Server Queue
You can purge the server queue of all jobs, or completed and aborted jobs
using the using the Polyspace Queue Manager.

Note You must have the queue manager password to purge the server queue.

6-24

Running Verifications on Polyspace® Server

To purge the server queue:

1 Double-click the Polyspace Spooler icon:

The Polyspace Queue Manager Interface opens.

2 Select Operations > Purge queue. The Purge queue dialog box opens.

3 Select one of the following options:

• Purge completed and aborted analysis — Removes all completed
and aborted jobs from the server queue.

• Purge the entire queue— Removes all jobs from the server queue.

6-25

6 Running a Verification

Note For unit-by-unit verification jobs, no jobs are removed until the
entire group has been verified.

4 Enter the Queue Manager Password.

5 Click OK.

The server queue is purged.

Changing Queue Manager Password
The Queue Manager has an administrator password to control access to
advanced operations such as purging the server queue. You can set this
password through the Queue Manager.

Note The default password is admin.

To set the Queue Manager password:

1 Double-click the Polyspace Spooler icon:

The Polyspace Queue Manager Interface opens.

2 Select Operations > Change Administrator Password.

The Change Administrator Password dialog box opens.

3 Enter your old password and new passwords, then click OK.

The password is changed.

Note Passwords are limited to 8 characters.

6-26

Running Verifications on Polyspace® Server

Sharing Server Verifications Between Users

Security of Jobs in Server Queue
For security reasons, all verification jobs in the server queue are owned by the
user who sent the verification from a specific account. Each verification has a
unique encryption key, that is stored in a text file on the client system.

When you manage jobs in the server queue (download, kill, remove, etc.), the
Queue Manager checks the public keys stored in this file to authenticate
that the job belongs to you.

If the key does not exist, an error message appears: “key for verification
<ID> not found”.

analysis-keys.txt File
The public part of the security key is stored in a file named analysis-keys.txt
associated to a user account. This file is located in:

• UNIX — /home/<username>/.Polyspace

• Windows — C:\Documents and Settings\<username>\Application
Data\Polyspace

The format of this ASCII file is as follows (tab-separated):

<id of launching> <server name of IP address> <public key>

where <public key> is a value in the range [0..F]

The fields in the file are tab-separated.

The file cannot contain blank lines.

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCE576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

6-27

6 Running a Verification

Sharing Verifications Between Accounts
To share a server verification with another user, you must provide the public
key.

To share a verification with another user:

1 Find the line in your analysis-keys.txt file containing the <ID> for the
job you want to share.

2 Add this line to the analysis-keys.txt file of the person who wants
to share the file.

The second user can then download or manage the verification.

Magic Key to Share Verifications
A magic key allows you to share verifications without copying individual
keys. This allows you to use the same key for all verifications launched from
a single user account.

The format for a magic key is as follows:

0 <Server id> <your hexadecimal value>

When you add this key to your verification-key.txt file, all verification
jobs you submit to the server queue use this key instead of a random one.
All users who have this key in their verification-key.txt file can then
download or manage your verification jobs.

Note This only works for verification jobs launched after you place the magic
key in the file. If the verification was launched before the key was added, the
normal key associated to the ID is used.

If analysis-keys.txt File is Lost or Corrupted
If your analysis-keys.txt file is corrupted or lost (removed by mistake) you
cannot download your verification results. To access your verification results
you must use administrator mode.

6-28

Running Verifications on Polyspace® Server

Note You must have the queue manager password to use Administrator
Mode.

To use administrator mode:

1 Double-click the Polyspace Spooler icon:

The Polyspace Queue Manager Interface opens.

2 Select Operations > Enter Administrator Mode.

3 Enter the Queue Manager Password.

4 Click OK.

You can now manage all verification jobs in the server queue, including
downloading results.

6-29

6 Running a Verification

Running Verifications on Polyspace Client

In this section...

“Specifying Source Files to Verify” on page 6-30

“Starting Verification on Client” on page 6-31

“What Happens When You Run Verification” on page 6-33

“Monitoring the Progress of the Verification” on page 6-33

“Stopping the Verification Before It is Complete” on page 6-34

Specifying Source Files to Verify
Each Polyspace project can contain multiple verifications. Each of these
verifications can analyze a specific set of source files using a specific set of
analysis options. Therefore, before you launch a verification, you must specify
which files in your project that you want to verify.

To copy source files to a verification:

1 Open the project containing the files you want to verify.

2 In the Project Browser Source tree, select the source files you want to verify.

3 Right click any selected file, and select Copy Source File
to > Verification_(#).

The selected source files appear in the Source tree of the verification.

6-30

Running Verifications on Polyspace® Client

Note You can also drag source files from a project into the Source folder
of a verification.

Starting Verification on Client
For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

If you launch a verification on C code containing more than 2,000 assignments
and calls, the verification will stop and you will receive an error message.

To start a verification that runs on a client:

6-31

6 Running a Verification

1 In the Project Browser, specify the source files you want to include in the
verification. For more information, see “Specifying Source Files to Verify”
on page 6-30.

2 Clear the Send to Polyspace Server check box in the General Analysis
options.

3 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning appears only when you clear the Send to Polyspace
Server check box.

4 Click the Run button on the Project Manager toolbar.

The Output Summary and Progress Monitor windows become active,
allowing you to monitor the progress of the verification.

6-32

Running Verifications on Polyspace® Client

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

What Happens When You Run Verification
The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because Polyspace
software is independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see
“Main Generator Behavior for Polyspace Software” in the Polyspace
Products for C Reference.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

Monitoring the Progress of the Verification
You can monitor the progress of the verification by viewing the progress
monitor and logs at the bottom of the Project Manager perspective.

The progress monitor highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

6-33

6 Running a Verification

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Project Manager window. Follow the
next steps to view the logs:

1 Click the Output Summary tab to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

2 Click the Verification Statistics tab to display statistics, such as analysis
options, stubbed functions, and the verification checks performed.

3 Click the Refresh button to update the display as the verification
progresses.

4 Click the Full Log tab to display messages, errors, and statistics for all
phases of the verification.

Note You can search the logs. In the Search in the log box, enter a
search term and click the left arrows to search backward or the right
arrows to search forward.

Stopping the Verification Before It is Complete
You can stop the verification before it is complete. If you stop the verification,
results are incomplete. If you start another verification, the verification starts
over from the beginning.

To stop a verification:

1 Click the Stop button on the Project Manager toolbar.

A warning dialog box opens.

6-34

Running Verifications on Polyspace® Client

2 Click Yes.

The verification stops and the message Verification process stopped
appears.

3 Click OK to close the Message dialog box.

Note Closing the Polyspace verification environment window does not stop
the verification. To resume display of the verification progress, start the
Polyspace software and open the project.

6-35

6 Running a Verification

Running Verifications from Command Line

In this section...

“Launching Verifications in Batch” on page 6-36

“Managing Verifications in Batch” on page 6-36

Launching Verifications in Batch
A set of commands allow you to launch a verification in batch.

All these commands begin with the following prefixes:

• Server verification —
Polyspace_Install/Verifier/bin/polyspace-remote-c

• Client verification —polyspace-remote-desktop-c

These commands are equivalent to commands with a prefix
Polyspace_Install/bin/polyspace-.

For example, polyspace-remote-desktop-c -server
[<hostname>:[<port>] | auto] allows you to send a C client
verification remotely.

Note If your Polyspace server is running on Windows, the
batch commands are located in the /wbin/ folder. For example,
Polyspace_Install/Verifier/wbin/polyspace-remote-c.exe

Managing Verifications in Batch
In batch, a set of commands allow you to manage verification jobs in the
server queue.

On UNIX platforms, all these command begin with the prefix
Polyspace_Common/RemoteLauncher/bin/psqueue-.

6-36

Running Verifications from Command Line

On Windows platforms, these commands begin with the prefix
Polyspace_Common/RemoteLauncher/wbin/psqueue-:

• psqueue-download <id> <results dir> — download an identified
verification into a results folder. When downloading a unit-by-unit
verification group, all the unit results are downloaded and a summary of
the download status for each unit is displayed.

- [-f] force download (without interactivity)

- -admin -p <password> allows administrator to download results.

- [-server <name>[:port]] selects a specific Queue Manager.

- [-v|version] gives release number.

• psqueue-kill <id> — kill an identified verification. For unit-by-unit
verification groups, you can stop the entire group, or individual jobs within
the group. Stopping an individual job does not kill the entire group.

• psqueue-purge all|ended — remove all completed verifications from
the queue. For unit-by-unit verification jobs, no jobs are removed until
the entire group has been verified.

• psqueue-dump— gives the list of all verifications in the queue associated
with the default Queue Manager. Unit-by-unit verification groups are
shown using a tree structure.

• psqueue-move-down <id>— move down an identified verification in the
Queue. Individual jobs can be moved within a unit-by-unit verification
group, but not outside of the group.

• psqueue-remove <id> — remove an identified verification in the queue.
You cannot remove a single job that is part of a unit-by-unit verification
group, you can only remove the entire group.

• psqueue-get-qm-server— give the name of the default Queue Manager.

• psqueue-progress <id>: give progression of the currently identified
and running verification. This command does not apply to unit-by-unit
verification groups, only the individual jobs within a group.

- [-open-launcher] display the log in the graphical user interface.

- [-full] give full log file.

6-37

6 Running a Verification

- psqueue-set-password <password> <new password> — change
administrator password.

• psqueue-check-config— check the configuration of Queue Manager.

- [-check-licenses] check for licenses only.

• PSQueueSpooler— open the Polyspace Queue Manager Interface (Spooler)
graphical user interface.

- [-server <hostname>] specify the name of a specific Polyspace server.
The Spooler connects to the specified server instead of the default server.

• psqueue-upgrade — Allow to upgrade a client side (see the Polyspace
Installation Guide in the Polyspace_Common/Docs folder).

- [-list-versions] give the list of available release to upgrade.

- [-install-version <version number> [-install-dir <folder>]]
[-silent] allow to install an upgrade in a given folder and in silent.

Note Polyspace_Common/bin/psqueue-<command> -h gives information
about all available options for each command.

6-38

7

Troubleshooting
Verification Problems

• “Verification Process Failed Errors” on page 7-2

• “Compilation Errors” on page 7-7

• “Link Errors and Warnings” on page 7-16

• “Stubbing Errors” on page 7-22

• “Automatic Stub Creation Errors” on page 7-29

• “Reducing Verification Time” on page 7-32

• “Obtaining Configuration Information” on page 7-51

• “Removing Preliminary Results Files” on page 7-54

7 Troubleshooting Verification Problems

Verification Process Failed Errors

In this section...

“Messages Described in This Section” on page 7-2

“Hardware Does Not Meet Requirements” on page 7-2

“You Did Not Specify the Location of Included Files” on page 7-3

“Polyspace Software Cannot Find the Server” on page 7-4

“Limit on Assignments and Function Calls” on page 7-6

Messages Described in This Section
If you see a message that includes Verification process failed, the
Polyspace software could not perform the verification. The following sections
present some possible reasons for a failed verification.

Message See

Errors found when verifying
host configuration

“Hardware Does Not Meet
Requirements” on page 7-2

include.h: No such file or
folder (where include.h represents
the included file)

“You Did Not Specify the Location of
Included Files” on page 7-3

Error: Unknown host : “Polyspace Software Cannot Find
the Server” on page 7-4

License error: number-of
assignments and function calls
is too big for -unit mode

“Limit on Assignments and Function
Calls” on page 7-6

Hardware Does Not Meet Requirements

Message
In the verification log:

Errors found when verifying host configuration.

7-2

Verification Process Failed Errors

Cause
The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientc/requirements.html.

Solution
You can:

• Upgrade your computer to meet the minimal requirements.

• In the General section of the Analysis options, select Continue with
current configuration and run the verification again.

You Did Not Specify the Location of Included Files

Message
In the verification log (where include.h represents the included file):

include.h: No such file or folder

Cause
Either the files are missing or you did not specify the location of included files.

Solution
Do one of the following:

• Include the file in the designated location.

• Specify the proper location of include files.

MathWorks recommends that you create a project file to store include files,
as described in “Creating a Project” on page 3-2.

7-3

http://www.mathworks.com/products/polyspaceclientc/requirements.html

7 Troubleshooting Verification Problems

Polyspace Software Cannot Find the Server

Message
Search in the verification log for:

Error: Unknown host :

Cause
Polyspace software uses information in the preferences to locate the server.
In this case, Polyspace software cannot find the server.

Solution
To find the server information in the preferences:

1 Select Options > Preferences.

2 Select the Server configuration tab.

7-4

Verification Process Failed Errors

How you deal with this error depends on the selected remote configuration
option.

7-5

7 Troubleshooting Verification Problems

Remote Configuration Option Solution

Automatically detect the remote
server

Specify the server by selecting Use
the following server and port and
providing the server name and port.

Use the following server and
port

Confirm the server name and port
number are accurate.

For information about setting up a server, see the Polyspace Installation
Guide.

Limit on Assignments and Function Calls

Message

Beginning C to intermediate language translation
**
C to intermediate language translation 1 (P_SP)
...

*** License error: number of assignments and function calls is
too big for -unit mode (5534 v.s 2000).
*** Stopping.

Cause
Polyspace Client for C/C++ software can only verify C code with up to 2,000
assignments and calls.

Solution
To verify code containing more than 2,000 assignments and calls, launch your
verification on the Polyspace Server for C/C++.

7-6

Compilation Errors

Compilation Errors

In this section...

“Compilation Error Overview” on page 7-7

“Checking Compilation Before Running Verification” on page 7-8

“Configuring a Text Editor” on page 7-8

“Examining Compile Log After Launching Verification” on page 7-8

“Compiler Messages Described in This Section” on page 7-10

“Syntax Error” on page 7-10

“Undeclared Identifier” on page 7-11

“No Such File or Folder” on page 7-12

“#error directive” on page 7-13

“Errors Resulting from Unsupported Non-ANSI Keywords Such as
@interrupt” on page 7-14

Compilation Error Overview
You can use Polyspace software instead of your compiler to make syntactical,
semantic, and other static checks. The Polyspace compiler follows the ANSI
C90 standard.

Polyspace detects compilation errors during the standard compliance checking
stage, which takes place before the verification stage. The compliance
checking stage takes about the same amount of time to run as a compiler.
Using Polyspace software early in development yields a number of benefits:

• Detection of link errors

• Detection of errors that only appear with two or more files

• Detection of compiler directives that you need to explicitly declare

• Objective, automatic, and early control of development work (possibly to
check code into a configuration management system)

7-7

7 Troubleshooting Verification Problems

Checking Compilation Before Running Verification
The Compilation Assistant allows you to check your project for compilation
problems before launching a verification, allowing you to avoid many
compilation errors. When the Compilation Assistant detects an error, it
reports the problem and suggests possible solutions.

For information on using the Compilation Assistant, see “Checking for
Compilation Problems” on page 6-5.

Configuring a Text Editor
Configure a text editor before you can open source files, as described in
“Configuring Text and XML Editors” on page 3-20.

Examining Compile Log After Launching Verification
The compile log displays compile phase messages and errors. To search the
log, enter search terms in the Search in the log box. Click the left arrows to
search backward or click the right arrows to search forward.

To examine errors in the compile log:

1 Click the Output Summary tab at the bottom of the Project Manager
perspective.

A list of compile phase messages appears.

7-8

Compilation Errors

2 Select any of the messages to view details and the full path of the file
containing the error.

3 To open the source file referenced by any message, right-click the row for
the message and select Open Source File.

The file opens in your text editor.

4 In the editor, locate the line of code where the compilation error occurs.

7-9

7 Troubleshooting Verification Problems

5 If you do not understand the error information in the Detail pane,
right-click the row for the message and select Open Preprocessed File.

This action opens the .ci file that the Polyspace software uses to compile
the source file. The contents of this file helps you understand the
compilation error.

6 Correct the error and run the verification again.

Compiler Messages Described in This Section
This section describes compiler messages that include the following phrases:

Phrase Found in Message See

syntax error “Syntax Error” on page 7-10

undeclared identifier “Undeclared Identifier” on page 7-11

No such file or folder

or

Catastrophic error: could not
open source file

“No Such File or Folder” on page 7-12

#error: directive “#error directive” on page 7-13

This section also describes error messages triggered by unsupported
keywords. See “Errors Resulting from Unsupported Non-ANSI Keywords
Such as @interrupt” on page 7-14.

This section includes sample code that triggers the example message.

Syntax Error

Message
Verifying compilation.c
compilation.c:3: syntax error; found `x' expecting `;'

7-10

Compilation Errors

Code Used
void main(void)
{
int far x;
x = 0;
x++;
}

Solution
The far keyword is unknown in ANSI C. This causes confusion at compilation
time. Should far be a variable or a qualifier? The int far x; construction
is illegal.

Possible corrections include:

• Remove far from the source code.

• Define far as a qualifier, such as const or volatile.

• Remove far artificially by specifying a compilation flag such as -D far=
(with a space after the equal sign).

Note To specify -D compilation flags that are generic to the project, for
efficiency, use the -include option. Refer to “How to Gather Compilation
Options Efficiently” on page 4-28.

Undeclared Identifier

Message
Verifying compilation.c
compilation.c:3: undeclared identifier `x'

7-11

7 Troubleshooting Verification Problems

Code Used
void main(void)
{
x = 0;
x++;
}

Solution
The type is unknown, and therefore the compilation stops. Should x be a
float, an int, or a char?

Some cross compilers define variables implicitly. Your code must declare
variables verification. Polyspace software has no knowledge about implicit
variables.

Similarly, some compilers interpret __SP as a reference to the stack pointer.
Use the -D compilation flag.

Note To specify -D compilation flags that are generic to the project, for
efficiency, use the -include option. Refer to “How to Gather Compilation
Options Efficiently” on page 4-28.

No Such File or Folder

Messages
Here are examples of messages that include No such file or folder and
catastrophic error: could not open source file:

compilation.c:1: one_file.h: No such file or folder

compilation.c:1: catastrophic error: could not open source file
"one_file.h" (where one_file.h is an include file)

Code Used
#include "one_file.h"

7-12

Compilation Errors

Solution
The one_file.h file is missing.

These files are essential for Polyspace software to complete the compilation,
for

• Data coherency

• Automatic stubbing

The Polyspace software must be able to find the include folder that contains
this file. Specify the include folder In the Project Manager perspective, or use
the -I option at the command line, as described in the reference page.

#error directive
The Polyspace software can terminate during compilation with an
unsupported platform #error. This error means that the software does not
recognize the header data types due to missing compilation flags.

Message
#error directive: !Unsupported platform; stopping!

Code Used

#if defined(__BORLANDC__) || defined(__VISUALC32__)
define MYINT int // then use the int type
#elif defined(__GNUC__) // GCC doesn't support myint
define MYINT long // but uses 'long' instead
#else
error !Unsupported platform; stopping!
#endif

Solution
In the Polyspace software, all compilation directives must be explicit. In this
example, the compilation stops because you did not specify the __BORLANDC__,
or the __VISUALC32__, or the __GNUC__ compilation flags. To fix this error, in

7-13

7 Troubleshooting Verification Problems

the Target/Compilation section, under Analysis options, for the Defined
Preprocessor Macros option, specify one of those three compilation flags
and restart the verification.

Errors Resulting from Unsupported Non-ANSI
Keywords Such as @interrupt
Code that includes a non-ANSI keyword that Polyspace software does not
support generates a compilation error. For example, keywords containing @
as a first character cause a compilation error. But in this case, you cannot
address the problem by using a compilation flag, nor with a file associated
with the -include option.

To address this problem, use the -post-preprocessing-command option.

When you use the -post-preprocessing-command option, write a script or
command to replace the unsupported, non-ANSI keyword with a supported
keyword. The command must process the standard output from preprocessing
and produce its results in accordance with standard output.

The specified script file or command runs just after the preprocessing phase
on each source file. The script executes on each preprocessed c file.

Note Preprocessed files have the extension .ci. All preprocessed files are
contained in a single compressed file named ci.zip. This file is in the
results folder in one of the following locations:

• <results>/ALL/SRC/MACROS/ci.zip

• <results>/C-ALL/ci.zip.

Caution Always preserve the number of lines in a preprocessed .ci file.
Adding or removing a line, can result in unpredictable behavior, including
changes to the location of checks and MACROS in the Run-Time checks
perspective.

7-14

Compilation Errors

Here is an example of such a script file. Save the script in a file named
myscript.pl.

#!/usr/bin/perl
bin STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{
Replace keyword titi with toto
$line =~ s/titi/toto/g;
Remove @interrupt (replace with nothing)
$line =~ s/@interrupt/ /g;

DONT DELTE: Print the current processed line to STDOUT
print $line;

}

To run the script on each preprocessed c file, use this command:

-post-preprocessing-command %POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

<absolute path to myscript.pl>\myscript.pl

Note Because Polyspace software no longer includes Cygwin, all files must
be executable by Windows. To support scripting, the Polyspace installation
includes Perl. You can access Perl in

Polyspace_Install\Verifier\tools\perl\win32\bin\perl.exe.

7-15

7 Troubleshooting Verification Problems

Link Errors and Warnings

In this section...

“Link Error Overview” on page 7-16

“Function: Wrong Argument Type” on page 7-17

“Function: Wrong Argument Number” on page 7-17

“Variable: Wrong Type” on page 7-18

“Variable: Signed/Unsigned” on page 7-18

“Variable: Different Qualifier” on page 7-19

“Variable: Array Against Variable” on page 7-19

“Variable: Wrong Array Size” on page 7-20

“Missing Required Prototype for varargs” on page 7-20

Link Error Overview
This section describes how to address some common types of link errors.

Link errors result from the checking that Polyspace performs for compliance
with ANSI C standards. Link error messages can apply to functions,
variables, and varargs.

The error message includes specific information that reflects the code that
the Polyspace software is checking, such as the function name and type
declaration.

Examining Preprocessed Code
Looking at the preprocessed code can help you to find link errors faster.

Preprocessed files have the extension .ci. All preprocessed files are contained
in a single compressed file named ci.zip. This file is in the results folder in
one of the following locations:

• <results>/ALL/SRC/MACROS/ci.zip

• <results>/C-ALL/ci.zip.

7-16

Link Errors and Warnings

Function: Wrong Argument Type

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'f' function has incompatible type with its definition

declared function type has 'arg 1' type incompatible with definition

int f(float y) int f(int *y);

{

int r; void main(void)

r=12; {

} int r;

r = f(&r);

}

Solution
The first parameter for the f function is either a float or a pointer to an
integer. The global declaration must match the definition.

Function: Wrong Argument Number

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'f' function has incompatible type with its definition

declared function type has incompatible args. number with definition

int f(float y) int f(int *y);

{

int r; void main(void)

r=12; {

} int r;

r = f(&r);

}

7-17

7 Troubleshooting Verification Problems

Solution
These two functions have a different number of arguments. This mismatch in
the number of arguments results in a nondeterministic execution.

Variable: Wrong Type

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

declared 'float' (32) type incompatible with defined 'int' (32) type

extern float x int x;

void main(void)

{}

Solution
Declare the x variable the same way in every file. If a variable x is as an
integer equal to 1, which is 0x0001, what does this value mean when seen as a
float? It could result in a NaN (Not a Number) during execution.

Variable: Signed/Unsigned

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

declared 'unsigned' type incompatible with defined 'signed' type

extern unsigned char x; char x;

void main(void)

{}

Solution
Consider the 8-bit binary value 10000010. Given that a char is 8 bits, it is not
clear whether it is 130 (unsigned), or maybe -126 (signed).

7-18

Link Errors and Warnings

Variable: Different Qualifier

Polyspace Output

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition

declared 'non qualified' type incompatible with defined 'volatile' type

'volatile' qualifier used

extern int x; volatile int x;

void main(void)

{}

Solution
Polyspace software flags the volatile qualifier, because that qualifier has
major implications for the verification. Because it is not clear which statement
is correct, the verification process generates a warning.

Variable: Array Against Variable

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

declared 'array' (384) type incompatible with defined 'int' (32) type

extern int x[12]; int x;

void main(void)

{

}

Solution
The real allocated size for the x variable is one integer. Any function
attempting to manipulate x[] corrupts memory.

7-19

7 Troubleshooting Verification Problems

Variable: Wrong Array Size

Polyspace Output

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition

declared array type has 'upper bound' 5 inferior to definition 'upper bound' 12

extern int x[12]; int x[5];

void main(void)

{

}

Solution
The real allocated size for the x variable is five integers. Any function
attempting to manipulate x[] between x[5] and x[11] corrupts memory.

Missing Required Prototype for varargs

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: missing required prototype for varargs. procedure 'g'.

void g(int, ...); void main(void)

{

void f(void) g(4);

{ }

g(12, abcde ,40)

}

Solution
Declare the prototype for g when main executes.

7-20

Link Errors and Warnings

To eliminate this error, you can add the following line to main:

void g(int, ...)

Or, you can avoid modifying main by adding that same line in a new file and
then when you launch the verification, use the -include option:

include c:\Polyspace\new_file.h

where new_file.h is the new file that includes the line void g(int, ...).

7-21

7 Troubleshooting Verification Problems

Stubbing Errors

In this section...

“Conflicts Between Standard Library Functions and Polyspace Stubs” on
page 7-22

“_polyspace_stdstubs.c Compilation Errors” on page 7-22

“General Troubleshooting Approaches” on page 7-24

“Restart with the -I option” on page 7-24

“Include Files with Stubs to Replace Automatic Stubbing” on page 7-25

“Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-26

“Provide a .c file Containing a Prototype Function” on page 7-27

“Ignore _polyspace_stdstubs.c” on page 7-28

Conflicts Between Standard Library Functions and
Polyspace Stubs
A code set can compile successfully for a target, but during the
__polyspace_stdstubs.c compilation phase for that same code, Polyspace
software can generate an error message.

The error message highlights conflicts between:

• A standard library function that the application includes

• One of the standard stubs that Polyspace software uses in place of that
function

For more information about errors generated during automatic stub creation,
see “Automatic Stub Creation Errors” on page 7-29.

_polyspace_stdstubs.c Compilation Errors
Here are examples of the errors relating to stubbing standard library
functions. The code uses standard library functions such as sprintf and
strcpy, illustrating possible problems with these functions.

7-22

Stubbing Errors

Example 1

C-STUBS/__polyspace__stdstubs.c:1117: string.h: No such file or
folder

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace__stdstubs.c:1118: syntax error; found
`strlen' expecting `;’

C-STUBS/__polyspace__stdstubs.c:1120: syntax error; found `i'
expecting `;'

C-STUBS/__polyspace__stdstubs.c:1120: undeclared identifier `i'

Example 2

Verifying C-STUBS/__polyspace__stdstubs.c

Error: missing required prototype for varargs. procedure
'sprintf'.

Example 3

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace__stdstubs.c:3027: missing parameter 4 type

C-STUBS/__polyspace__stdstubs.c:3027: syntax error; found `n'
expecting `)'

C-STUBS/__polyspace__stdstubs.c:3027: skipping `n'

C-STUBS/__polyspace__stdstubs.c:3037: undeclared identifier `n'

7-23

7 Troubleshooting Verification Problems

General Troubleshooting Approaches
You can use a range of techniques to address these error messages. These
techniques reflect different balances for the verification between:

• Precision

• Amount of time preparing the code

• Execution time

Try any of the techniques in any order. Consider trying the simplest
approaches first, and trying other techniques as necessary to achieve the
balance of the trade-offs that you seek. Here are the techniques, listed in
order of estimated simplicity, from simplest to most thorough:

• “Restart with the -I option” on page 7-24

• “Include Files with Stubs to Replace Automatic Stubbing” on page 7-25

• “Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-26

- Use when precision is important enough to justify extensive code
preparation time

• “Provide a .c file Containing a Prototype Function” on page 7-27

- Use when you do not want to invest much time for code preparation time

• “Ignore _polyspace_stdstubs.c” on page 7-28

If the problem persists after trying all these solutions, contact MathWorks
support.

Restart with the -I option
Generally you can best address stubbing errors by restarting the verification.
Include the header file containing the prototype and the required definitions,
as used during compilation for the target.

The least invasive way of including the header file containing the prototype is
to use the -I option.

7-24

Stubbing Errors

Include Files with Stubs to Replace Automatic
Stubbing
The Polyspace software provides a selection of files that contain stubs for most
standard library functions. You can use those stubs in place of automatic
stubbing.

For replacement of stubbing to work effectively, provide the correct include
file for the function. In the following example, the standard library function
is strlen. This example assumes that you have included string.h. Because
the string.h file can differ between targets, there are no default include
folders for Polyspace stub files.

If the compiler has implicit include files, manually specify those include files,
as shown in this example.

(_polyspace_stdstubs.c located in <<results_dir>>/C-ALL/C-STUBS)

_polyspace_stdstubs.c
#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)
#include <string.h>
size_t strlen(const char *s)
{
size_t i=0;
while (s[i] != 0)
i++;

return i;
}
#endif /* _polyspace_strlen */

If problems persist, try one of these solutions:

• “Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-26

• “Provide a .c file Containing a Prototype Function” on page 7-27

• “Ignore _polyspace_stdstubs.c” on page 7-28

7-25

7 Troubleshooting Verification Problems

Create a _polyspace_stdstubs.c File with Necessary
Includes

1 Copy <<results_dir>>/C-ALL/C-STUBS/ _polyspace_stdstubs.c to the
sources folder and rename it polyspace_stubs.c.

This file contains the whole list of stubbed functions, user functions, and
standard library functions. For example:

#define _polyspace_strlen
#define a_user_function

2 Find the problem function in the file. For example:

#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)
#include <string.h>
size_t strlen(const char *s)
{
size_t i=0;
while (s[i] != 0)
i++;

return i;
}

#endif /* __polyspace_strlen */

The verification requires you to include the string.h file that the
application uses.

3 Do one of the following (MathWorks recommends the first approach):

• Provide the string.h file that contains the real prototype and type
definitions for the stubbed function.

• Extract the relevant part of that file for inclusion in the verification.

For example, for strlen:

string.h
// put it in the /homemade_include folder
typedef int size_t;
size_t strlen(const char *s);

7-26

Stubbing Errors

4 Specify the path for the include files and relaunch Polyspace, using one
of these commands:

polyspace-c -I /homemade_include

or

polyspace-c -I /our_target_include_path

Provide a .c file Containing a Prototype Function

1 Identify the function causing the problem (for example, sprintf).

2 Add a .c file to your verification containing the prototype for this function.

3 Restart the verification either from the Project Manager perspective or
from the command line.

You can find other __polyspace_no_function_name options in
_polyspace__stdstubs.c files, such as:

__polyspace_no_vprintf
__polyspace_no_vsprintf
__polyspace_no_fprintf
__polyspace_no_fscanf
__polyspace_no_printf
__polyspace_no_scanf
__polyspace_no_sprintf
__polyspace_no_sscanf
__polyspace_no_fgetc
__polyspace_no_fgets
__polyspace_no_fputc
__polyspace_no_fputs
__polyspace_no_getc

Note If you are considering defining multiple project generic -D options,
using the -include option can provide a more efficient solution to this type of
error. Refer to “How to Gather Compilation Options Efficiently” on page 4-28.

7-27

7 Troubleshooting Verification Problems

Ignore _polyspace_stdstubs.c
When all other troubleshooting approaches have failed, you can try ignoring
_polyspace_stdstubs.c. To ignore _polyspace_stdstubs.c, but still see
which standard library functions are in use:

1 Do one of the following:

• Deactivate all standard stubs using -D POLYSPACE_NO_STANDARD_STUBS
option. For example:

polyspace-c -D POLYSPACE_NO_STANDARD_STUBS

• Deactivate all stubbed extensions to ANSI C standard by using -D
POLYSPACE_STRICT_ANSI_STANDARD_STUBS. For example:

polyspace-c -D POLYSPACE_STRICT_ANSI_STANDARD_STUBS

This approach presents a list of functions Polyspace software tries to stub.
It also lists the standard functions in use (most probably without any
prototype), and generates the following type of message:

* Function strcpy may write to its arguments and may
return parts of them. Does not model pointer effects.
Returns an initialized value.

Fatal error: function 'strcpy' has unknown prototype

2 Add a proper include file in the C file that uses your standard library
function. If you restart Polyspace with the same options, the default
behavior results for these stubs for this particular function.

Consider the example size_t strcpy(char *s, const char *i) stubbed to

• Write anything in *s

• Return any possible size_t

7-28

Automatic Stub Creation Errors

Automatic Stub Creation Errors

In this section...

“Three Types of Error Messages” on page 7-29

“Function Pointer Error” on page 7-29

“Unknown Prototype Error” on page 7-31

“Parameter -entry-points Error” on page 7-31

Three Types of Error Messages
The Polyspace software generates three different types of error messages
during the automatic creation of stubs.

For more information about stubbing errors, see “Stubbing Errors” on page
7-22.

Function Pointer Error

Message

Fatal error: function 'f' refers to a function pointer either
much too complex or in a too-complex data-structure, or with
unknown parameters.
It cannot be stubbed automatically.

Solutions
Consider a prototype f that contains a function pointer as a parameter.

If the function pointer prototype only contains scalars and/or floats, the
Polyspace software automatically stubs f.

For example, the verification process automatically stubs the following
function:

int f()
void (*ptr_ok)(int, char, float),

7-29

7 Troubleshooting Verification Problems

other_type1 other_param1);

If this function pointer prototype also contains pointers, you get the error
message and have to stub the f function manually.

For example, stub the following function manually (unless you use the
-permissive-stubber option):

int f()
void (*ptr_ok)(int *, char, float),
other_type1 other_param1);

If you use the -permissive-stubber option on the following function f(), you
still see the function pointer error. The Polyspace software does not recognize
if the f() calls the function pointer ptr.

typedef void (*ptr_func_T) (int, int*, float);
extern ptr_func_T* extern_function_ptr(void);
extern int f(ptr_func_T, int other_param1);

void function_link_stubber(void)
{

ptr_func_T* ptr = extern_function_ptr();
f(ptr,10);
extern_function_ptr();

}

In this case, to resolve the error, you can provide a manual stub of f() that
does not call the function pointer ptr. Add this stub to the verification. The
code for this solution is:

typedef void (*ptr_func_T) (int, int*, float);
extern ptr_func_T* extern_function_ptr(void);
extern int pst_random(void);
int f(ptr_func_T ptrf, int other_param1)
{

return pst_random();
}

7-30

Automatic Stub Creation Errors

Unknown Prototype Error

Message

Fatal error: function 'f' has unknown prototype

Error message explanation:
- "function has wrong prototype" means that either the function
has no prototype or its prototype is not ANSI compliant.

- "task is undefined" means that a function has been declared
to be a task but has no known body

Solution
Provide an ANSI-compliant prototype.

Parameter -entry-points Error

Message

*** Verifier found an error in parameter -entry-points: task "w"
must be a userdef function
--- ---
--- ---
--- Found some errors in launching command. ---
--- Please consult rte-kernel -h to correct them ---
--- and launch the verification again. ---
--- ---
--- ---

Solution
A function or procedure declared to be an -entry-points cannot be an
automatically stubbed function.

7-31

7 Troubleshooting Verification Problems

Reducing Verification Time

In this section...

“Factors Impacting Verification Time” on page 7-32

“Displaying Verification Status Information” on page 7-33

“Techniques for Improving Verification Performance” on page 7-34

“Turning Antivirus Software Off” on page 7-36

“Tuning Polyspace Parameters” on page 7-36

“Subdividing Code” on page 7-37

“Reducing Procedure Complexity” on page 7-47

“Reducing Task Complexity” on page 7-49

“Reducing Variable Complexity” on page 7-49

“Choosing Lower Precision” on page 7-50

Factors Impacting Verification Time
These factors affect how long it takes to run a verification:

• The size of the code

• The number of global variables

• The nesting depth of the variables (the more nested they are, the longer
it takes)

• The depth of the call tree of the application

• The intrinsic complexity of the code, particularly with regards to pointer
manipulation

Because many factors impact verification time, there is no precise formula
for calculating verification duration. Instead, Polyspace software provides
graphical and textual output to indicate how the verification is progressing.

7-32

Reducing Verification Time

Displaying Verification Status Information
For client verifications, monitor the progress of your verification using the
Progress Monitor and Verification Statistics tabs in the Project Manager.
For more information, see “Monitoring the Progress of the Verification” on
page 6-33.

For server verifications, use the Polyspace Queue Manager to follow the
progress of your verification. For more information, see “Monitoring Progress
of Server Verification” on page 6-15.

7-33

7 Troubleshooting Verification Problems

The progress bar highlights each completed phase and displays the amount
of time for that phase. You can estimate the remaining verification time by
extrapolating from this data, and considering the number of files and passes
remaining.

Techniques for Improving Verification Performance
This section suggests methods to reduce the duration of a particular
verification, with minimal compromise for the launch parameters or the
precision of the results.

You can increase the size of a code sample for effective analysis by tuning the
tool for that sample. Beyond that point, subdividing the code or choosing a
lower precision level offers better results (-O1, -O0).

You can use several techniques to reduce the amount of time required for a
verification, including

• “Turning Antivirus Software Off” on page 7-36

• “Tuning Polyspace Parameters” on page 7-36

• “Subdividing Code” on page 7-37

• “Reducing Procedure Complexity” on page 7-47

• “Reducing Task Complexity” on page 7-49

• “Reducing Variable Complexity” on page 7-49

• “Choosing Lower Precision” on page 7-50

You can combine these techniques. See the following performance-tuning
flow charts:

• “Standard Scaling Options Flow Chart” on page 7-35

• “Reducing Code Complexity” on page 7-36

7-34

Reducing Verification Time

Standard Scaling Options Flow Chart

��

���

���

�
���
��
�����
��
����

*01

���

�
����������������
�������
��������������
2

�3/������!��4�5�.�62
������������!��4�5�.7�)�8	���������2
��
	������������!��4�5�.7���
49����:;�.7<����������6�=2
>��	������!��4�5?��72

"		���
�����4
@?0������1

"		���
�����4
5?0������1

�����
!������1

������������
������
��!������
�2
����������	������
�����
		���
����
�������
�������!��������������
����2

������������
������
��!������
�
����
�
�
����
�����
��2
�������������
�������!������
�������
����2
�
��
����
����
���
��
����������

		���
����2

$�������
���	
�����������?<����
�
�����
���
������������
��������?A
�	�������3����	
��� �����2
���������
��	����������������
��2
�������	������������	��)���2

���

���

��

7-35

7 Troubleshooting Verification Problems

Reducing Code Complexity
To reduce code complexity, MathWorks recommends that you try the following
techniques, in the order listed:

• “Reducing Procedure Complexity” on page 7-47

• “Reducing Task Complexity” on page 7-49

• “Reducing Variable Complexity” on page 7-49

After you use any of these techniques, restart the verification.

Turning Antivirus Software Off
Disabling or switching off any third-party antivirus software for the duration
of a verification can reduce the verification time by up to 40%.

Tuning Polyspace Parameters

Impact of Parameter Settings
Compromise to balance the time required to perform a verification and the
time required to review the results. Launching Polyspace verification with
the following options reduces the time taken for verification. However, these
parameter settings compromise the precision of the results. The less precise
the results of the verification, the more time you can spend reviewing the
results.

Recommended Parameter Tuning
MathWorks suggests that you use the parameters in the sequence listed. If
the first suggestion does not increase the speed of verification sufficiently,
then introduce the second, and so on.

• Switch from -O2 to a lower precision;

• Set the -respect-types-in-globals and -respect-types-in-fields
options;

• Set the -k-limiting option to 2, then 1, or 0;

• Manually stub missing functions which write into their arguments.

7-36

Reducing Verification Time

• If some code uses some large arrays, use the -no-fold option.

For example, an appropriate launching command is

polyspace-c -O0 -respect-types-in-globals -k-limiting 0

Subdividing Code

• “An Ideal Application Size” on page 7-37

• “Benefits of Subdividing Code” on page 7-37

• “Possible Issues with Subdividing Code” on page 7-38

• “Recommended Approach” on page 7-39

• “Selecting a Subset of Code” on page 7-41

An Ideal Application Size
People have used Polyspace software to analyze numerous applications with
greater than 100,000 lines of code.

There always is a compromise between the time and resources required to
analyze an application, and the resulting selectivity. The larger the project
size, the broader the approximations Polyspace software makes. Broader
approximations produce more oranges. Large applications can require you to
spend much more time analyzing the results and your application.

These approximations enable Polyspace software to extend the range of
project sizes it can manage, to perform the verification further, and to solve
traditionally incomputable problems. Balance the benefits derived from
verifying a whole large application against the loss of precision that results.

Benefits of Subdividing Code
Subdividing a large application into smaller subsets of code provides several
benefits. You:

• Quickly isolate a meaningful subset

• Keep all functional modules

7-37

7 Troubleshooting Verification Problems

• Can maintain a high precision level (for example, level O2)

• Reduce the number of orange items

• Get correct results are correct because you do not need to remove any
thread affecting change shared data

• Reduce the code complexity considerably

Possible Issues with Subdividing Code
Subdividing code can lead to these problems:

• Orange checks can result from a lack of information regarding the
relationship between modules, tasks, or variables.

• Orange checks can result from using too wide a range of values for stubbed
functions.

• Some loss of precision; the verification consider all possible values for a
variable.

When the Application is Incomplete. When the code consists of a small
subset of a larger project, Polyspace software automatically stubs many
procedures. Polyspace bases the stubbing on the specification or prototype of
the missing functions. Polyspace verification assumes that all possible values
for the parameter type are returnable.

Consider two 32-bit integers a and b, which are initialized with their full
range due to missing functions. Here, a*b causes an overflow, because a and b
can be equal to 2^31. Precise stubbing can reduce the number of incidences of
these data set issue orange checks.

Now consider a procedure f that modifies its input parameters a and b. f
passes both parameters by reference. Suppose a can be from 0 through 10,
and b any value between -10 and 10. In an automatically stubbed function,
the combination a=10 and b=10 is possible, even if it is not possible with the
real function. This situation introduces orange checks in a code snippet such
as 1/(a*b - 100), where the division would be orange.

• So, even with precise stubbing, verification of a small section of code can
introduce extra orange checks. However, the net effect from reducing the
complexity is to reduce the total number of orange checks.

7-38

Reducing Verification Time

• With default stubbing, the increase in the number of orange checks as the
result of this phenomenon tends to be more pronounced.

Considering the Effects of Application Code Size. Polyspace can make
approximations when computing the possible values of the variables, at any
point in the program. Such an approximation use a superset of the actual
possible values.

For instance, in a relatively small application, Polyspace software can retain
detailed information about the data at a particular point in the code. For
example, the variable VAR can take the values

{ –2 ; 1 ; 2 ; 10 ; 15 ; 16 ; 17 ; 25 }

If the code uses VAR to divide, the division is green (because 0 is not a possible
value).

If the program is large, Polyspace software simplifies the internal data
representation by using a less precise approximation, such as:

[-2 ; 2] U {10} U [15 ; 17] U {25}

Here, the same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the
verification, Polyspace can further simplify the VAR range to (for example):

[-2 ; 20]

This phenomenon increases the number of orange warnings when the size of
the program becomes large.

Recommended Approach
MathWorks recommends that you begin with file-by-file verifications (when
dealing with C language), package-by-package verifications (when dealing
with Ada language), and class-by-class verifications (when dealing with
C++ language).

7-39

7 Troubleshooting Verification Problems

The maximum application size is between 20,000 (for C++) and 50,000 lines of
code (for C and Ada). For such applications of that size, approximations are
not too significant. However, sometimes verification time is extensive.

Experience suggests that subdividing an application before verification
normally has a beneficial impact on selectivity. The verification produces
more red, green and gray checks, and fewer unproven orange checks. This
subdivision approach makes bug detection more efficient.

��6��:�������������=

7������

�B�C?�07���@?�07
�������������

*�
�
���������
������
�	
������
���������
��

*�
�
���������
���	��)���

D������
�
��

A compromise between selectivity and size

Polyspace verification is most effective when you use it as early as possible in
the development process, before any other form of testing.

When you analyze a small module (for example, a file, piece of code, or
package) using Polyspace software, focus on the red and gray checks. orange
unproven checks at this stage are interesting, because most of them deal with
robustness of the application. The orange checks change to red, gray, or green
as the project progresses and you integrate more modules.

In the integration process, code can become so large (50,000 lines of code or
more). This amount of code can cause the verification to take an unreasonable
amount of time. You have two options:

7-40

Reducing Verification Time

• Stop using Polyspace verification at this stage (you have gained many
benefits already).

• Analyze subsets of the code.

Selecting a Subset of Code
Subdividing a project for verification takes considerably less verification time
for the sum of the parts than for the whole project considered in one pass.
Consider data flow when you subdivide the code.

Consider two distinct concepts:

• Function entry-points — Function entry-points refer to the Polyspace
execution model, because they start concurrently, without any assumption
regarding sequence or priority. They represent the beginning of your call
tree.

• Data entry-points — Regard lines in the code that acquire data as data
entry points.

Example 1

int complete_treatment_based_on_x(int input)
{
thousand of line of computation...

}

Example 2

void main(void)
{
int x;
x = read_sensor();
y = complete_treatment_based_on_x(x);

}

Example 3

#define REGISTER_1 (*(int *)0x2002002)
void main(void)
{

7-41

7 Troubleshooting Verification Problems

x = REGISTER_1;
y = complete_treatment_based_on_x(x);

}

In each case, the x variable is a data entry point and y is the consequence of
such an entry point. y can be formatted data, due to a complex manipulation
of x.

Because x is volatile, a probable consequence is that y contains
all possible formatted data. You could remove the procedure
complete_treatment_based_on_x completely, and let automatic stubbing
work. The verification process considers y as potentially taking any value in
the full range data (see “Stubbing” on page 5-2).

//removed definition of complete_treatment_based_on_x
void main(void)
{
x = ... // what ever
y = complete_treatment_based_on_x(x); // now stubbed!

}

Typical Examples of Removable Components, According to the Logic
of the Data. Here are some examples of removable components, based on
the logic of the data:

• Error management modules often contain a large array of structures
accessed through an API, but return only a Boolean value. Removing the
API code and retaining the prototype causes the automatically generated
stub to return a value in the range [-2^31, 2^31-1], which includes 1 and
0. Polyspace considers the procedure able to return all possible answers,
just like reality.

• Buffer management for mailboxes coming from missing code –
Suppose an application reads a huge buffer of 1024 char. The application
then uses the buffer to populate three small arrays of data, using a
complicated algorithm before passing it to the main module. If the
verification excludes the buffer, and initializes the arrays with random
values instead, then the verification of the remaining code is just the same.

• Display modules

7-42

Reducing Verification Time

Subdivision According to Data Flow. Consider the following example.

����

����

����

����

���	

���

�������"
����
����
�����
��
��������������

�������7
����
����
�����
��
��������������

�������"���
����
��
!���

���	���������
��
!���

����������	����

��������������

�
��
	
����

��
���	
�����

In this application, var1, var2, and var3 can vary between the following
ranges:

var1 From 0 through 10

var2 From 1 through 100

var3 From –10 through 10

Module A consists of an algorithm that interpolates between var1 and var2.
That algorithm uses var3 as an exponential factor, so when var1 is equal to 0,
the result in var4 is also equal to 0.

As a result, var4, var5, and var6 have the following specifications:

Ranges var4
var5
var6

Between –60 and 110
From 0 through 12
From 0 through 100

Properties And a set of
properties between
variables

• If var2 is equal to 0, then var4 >
var5 > 5.

• If var3 is greater than 4, then var4
< var5 < 12

• ...

7-43

7 Troubleshooting Verification Problems

Subdivision in accordance with data flow allows you to analyze modules A
and B separately:

• A uses var1, var2, and var3, initialized respectively to [0;10], [1;100],
and [-10;10].

• B uses var4, var5, and var6, initialized respectively to [-60;110], [0;12],
and [-10;10].

The consequences are:

• A slight loss of precision on the B module verification, because now
Polyspace considers all combinations for var4, var5, and var6. It includes
all possible combinations, even those combinations that the module A
verification restricts.

For example, if the B module included the test

If var2 is equal to 0, then var4 > var5 > 5

then the dead code on any subsequent else clause is undetected.

• An in-depth investigation of the code is not necessary to isolate a
meaningful subset. It means that a logical split is possible for any
application, in accordance with the logic of the data.

• The results remain valid, because there no requirement to remove (for
example) a thread that changes shared data.

• The code is less complex.

• You can maintain the maximum precision level.

Typical examples of removable components:

• Error management modules. A function has_an_error_already_occurred
can return TRUE or FALSE. Such a module can contain a large array of
structures accessed through an API. Removing API code with the retention
of the prototype results in the Polyspace verification producing a stub that
returns [-2^31, 2^31-1]. That result clearly includes 1 and 0 (yes and
no). The procedure has_an_error_already_occurred returns all possible
answers, just like the code would at execution time.

7-44

Reducing Verification Time

• Buffer management for mailboxes coming from missing code. Suppose the
code reads a large buffer of 1024 char and then collates the data into three
small arrays of data, using a complicated algorithm. It then gives this data
to a main module for treatment. For the verification, Polyspace can remove
the buffer and initialize the arrays with random values.

• Display modules.

Subdivide According to Real-Time Characteristics. Another way to split
an application is to isolate files which contain only a subset of tasks, and
to analyze each subset separately.

If a verification initiates using only a few tasks, Polyspace loses information
regarding the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and reads it at a particular moment, the values of x affect
subsequent operations in T2.

For example, consider that T1 can write either 10 or 12 into x and that T2 can
both write 15 into x and read the value of x. Two ways to achieve a sound
standalone verification of T2 are:

• You could declare x as volatile to take into account all possible executions.
Otherwise, x takes only its initial value or x variable remains constant,
and verification of T2 is a subset of possible execution paths. You can get
precise results, but it includes one scenario among all possible states for
the variable x.

• You could initialize x to the whole possible range [10;15], and then call
the T2 entry-point. This approach is accurate if x is calibration data.

Subdivide According to Files. This method is simple, but it can produce
good results when you are trying to find red errors and bugs in gray code.

7-45

7 Troubleshooting Verification Problems

Simply extract a subset of files and perform a verification using one of these
approaches:

• Use entry points.

• Create a main that calls randomly all functions that the subset of the code
does not call.

7-46

Reducing Verification Time

Reducing Procedure Complexity
If the log file does not display any messages for several hours, you probably
have a scaling issue. You can reduce the complexity of some of the procedures
by cloning the calling context for specific procedures. One way to reduce
complexity is to specify the -inline option on procedures whose names
appear in the log file in one or both of two lists.

The -inline option creates clones of each specified procedure for each call to
it. This option reduces the number of aliases in a procedure, and can improve
precision in some situations.

Suppose that the log file contains two lists that look like the following:

%%% BEGIN PRE%%%

* inlining procedure_1 could decrease the number of aliases of parameter #3 from 752 to 3

* inlining procedure_2 could decrease the number of aliases of parameter #3 from 2687 to 3

* inlining procedure_3 could decrease the number of aliases of parameter #4 from 1542 to 4

%%%END PRE%%%

%%% BEGIN PRE%%%

procedures that write the biggest sets of aliases: procedure_4 (2442), procedure_2 (1120), procedure_5 (500)

%%%END PRE%%%

Looking at this example log file, procedure_1 through procedure_5 are good
candidates to be inlined.

Follow the steps on this flow chart to determine which procedure_x must be
inlined, that is, for which procedure_x you need to specify the -inline option.

7-47

7 Troubleshooting Verification Problems

���������������������
������������

���

"��
�����������
�������������������

���

��
$�

�����������
������
���������

1

����
�����������
�
���E�C?
�����
1

����
�����������
����������
�������

	
�
������
1

����
�����������
�
�����
���	�
1

���
���

���

����
�����������
	
���	������
	
�
���������

�������	��������
�������������

1

��

������
������

�����������

"��
�����������

�����������������������
����������
�����������

����
����������������������)����
	��������F)

����
�����������
�
����
��
!���8
���
�
������

1

���

�� �� �� ��

Here are three example situations:

• Using the preceding log file, inline procedure_2 because it appears in both
lists. In addition, if it has no loops, inline procedure_5.

• Inline procedures that have a variable number of arguments, such as
printf and sprintf.

• In the following examples, consider whether each procedure, procedure_x,
passes its pointer parameters to another procedure.

7-48

Reducing Verification Time

Does this procedure pass pointer parameters?

Yes No No

void procedure_x(int *p)
{
procedure_y(p)

}

void procedure_x(int q) void procedure_x(int *r)
{
*r = 12

}

Exercise caution when you inline procedures. Inlining duplicates code and
can drastically increase the number of lines of code, resulting in increased
computation time.

For example, suppose procedure_2 has 30 lines of codes and is called 30
times; procedure_5 has 100 lines of code and is called 50 times. The number
of lines of code becomes more than 5000 lines, so computation time increases.

Reducing Task Complexity
If the code contains two or more tasks, and particularly if there are
more than 10,000 alias reads, set the option Reduce task complexity
(-lightweight-thread-model). This option reduces:

• Task complexity

• Verification time

However, using this option causes more oranges and a loss of precision on
reads of shared variables through pointers.

Reducing Variable Complexity

Variable
Characteristic

Action

The types are complex. Set the -k-limiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain
precision.

There are large arrays Set the -no-fold option.

7-49

7 Troubleshooting Verification Problems

Choosing Lower Precision
The amount of simplification applied to the data representations depends on
the required precision level (O0, O2), Polyspace software adjusts the level of
simplification. For example:

• -O0 — shorter computation time

• -O2 — less orange warnings

• -O3 — less orange warnings and longer computation time. MathWorks
recommends using this option only for projects containing less than 1,000
lines of code.

7-50

Obtaining Configuration Information

Obtaining Configuration Information
The polyspace-ver command allows you to gather information quickly about
your system configuration. Use this information when entering support
requests.

Configuration information includes:

• Hardware configuration

• Operating system

• Polyspace licenses

• Specific version numbers for Polyspace products

To obtain your configuration information, enter the following command:

• UNIX/Linux— Polyspace_Install/Verifier/bin/polyspace-ver

• Windows— Polyspace_Install/Verifier/wbin/polyspace-ver.exe

The configuration information appears.

7-51

7 Troubleshooting Verification Problems

7-52

Obtaining Configuration Information

Note You can obtain the same configuration information by selecting
Help > About in the Polyspace Verification Environment.

7-53

7 Troubleshooting Verification Problems

Removing Preliminary Results Files
By default, the software automatically deletes preliminary results files when
they are no longer needed by the verification. However, if you run a client
verification using the option -keep-all-files, preliminary results files are
retained in the results folder. This allows you to restart the verification from
any stage, but can leave unnecessary files in your results folder.

If you later decide that you no longer need these files, you can remove them.

To remove preliminary results files,

1 Open the project containing the results you want to delete in the Project
Manager.

2 Select the results you want to delete.

3 Press the Delete key on your keyboard.

The Delete Results folder dialog box opens.

4 If you want to delete the entire results folder, select Delete recursively
this folder, otherwise clear the check-box.

5 Click Yes.

The results files are deleted.

7-54

8

Reviewing Verification
Results

• “Before You Review Polyspace Results” on page 8-2

• “Opening Verification Results” on page 8-8

• “Reviewing Results in Assistant Mode” on page 8-35

• “Reviewing Results in Manual Mode” on page 8-47

• “Tracking Review Progress” on page 8-58

• “Importing and Exporting Review Comments” on page 8-67

• “Generating Reports of Verification Results” on page 8-71

• “Using Polyspace Results” on page 8-83

8 Reviewing Verification Results

Before You Review Polyspace Results

In this section...

“Overview: Understanding Polyspace Results” on page 8-2

“Why Gray Follows Red and Green Follows Orange” on page 8-3

“The Message and What It Means” on page 8-4

“The C Explanation” on page 8-5

Overview: Understanding Polyspace Results
Polyspace software presents verification results as colored entries in the
source code. There are four main colors in the results:

• Red – Indicates code that always has an error (errors occur every time
the code is executed).

• Gray – Indicates unreachable code (dead code).

• Orange – Indicates unproven code (code might have a run-time error).

• Green – Indicates code that never has a run-time error (safe code).

When you analyze these colors, remember these rules:

• An instruction is verified only if no run-time error is detected in the
previous instruction.

• The verification assumes that each run-time error causes a “core dump.”
The corresponding instruction is considered to have stopped, even if the
actual run-time execution of the code might not stop. This means that
red checks are always followed by gray checks, and orange checks only
propagate the green parts through to subsequent checks.

• Focus on the verification message. Do not jump to false conclusions. You
must understand the color of a check step by step, until you find the root
cause of a problem.

• Determine the cause by examining the actual code. Do not focus on what
the code is supposed to do.

8-2

Before You Review Polyspace® Results

Why Gray Follows Red and Green Follows Orange
Gray checks follow red checks, and green checks are propagated out of
orange checks.

In the following example, consider why:

• The gray checks follow the red in the red function.

• There are green checks relating to the array.

void red(void)
{
int x;
x = 1 / x ;
x = x + 1;
}

extern int Read_An_Input(void);
void propagate(void)
{
int X;
int y[100];
X = Read_An_Input();
y[X] = 0; // [array index within bounds]
y[X] = 0;

}

Consider each line of code for the red function:

• When Polyspace verification divides by X, X is not initialized. Therefore,
the corresponding check (Non Initialized Variable) on X is red.

• As a result, Polyspace verification stops all possible execution paths
because they all produce an RTE. Therefore, the subsequent instructions
are gray (unreachable code).

Now, consider each line of code for the propagate function:

• X is assigned the return value of Read_An_Input. After this assignment,
X = [-2^31, 2^31-1].

• At the first array access, you might see an “out of bounds” error because
X can equal -3 as well as 3.

• Subsequently, all conditions leading to an RTE are truncated — they are no
longer considered in the verification. On the following line, all executions
in which X = [-2^31, -1] and [100, 2^31-1] are stopped.

8-3

8 Reviewing Verification Results

• At the next instruction, X = [0, 99].

• Therefore, at the second array access, the check is green because X = [0, 99].

Summary
Green checks can be propagated out of orange checks.

The Message and What It Means
Polyspace software numbers checks to correspond to the code execution order.

Consider the instruction x++;

The verification first checks for a potential NIV (Non Initialized Variable) for
x, and then checks the potential OVFL (overflow). This action mimics the
actual execution sequence.

Understanding these sequences can help you understand the message
presented by the verification, and what that message means.

Consider an orange NIV on x in the test:

if (x > 101);

You might conclude that the verification does not keep track of the value of x.
However, consider the context in which the check is made:

extern int read_an_input(void);

void main(void)
{
int x;
if (read_an_input()) x = 100;
if (x > 101) // [orange on the NIV : non initialised variable]
{ x++; } // gray code

}

8-4

Before You Review Polyspace® Results

Explanation
You can see the category of each check by clicking it in the Run-Time Checks
perspective. When you examine an orange check, you see that any value of a
variable that would that results in a run-time error (RTE) is not considered
further. However, as this example NIV (Non Initialized Variable) shows, any
value that does not cause an RTE is verified on subsequent lines.

The correct interpretation of this verification result is that if x is initialized,
the only possible value for it is 100. Therefore, x can never be both initialized
and greater than 101, so the rest of the code is gray. This conclusion may be
different from what you first suspect.

Summary
In summary:

• "(x > 100)" does NOT mean that the verification does not know anything
about x.

• "(x > 100)" DOES mean that the verification does not know whether X
is initialized.

When you review results, remember:

• Focus on the message provided in the results.

• Do not assume any conclusions.

The C Explanation
Verification results depend entirely on the code that you are verifying. When
interpreting the results, do not consider:

• Any physical action from the environment in which the code operates.

• Any configuration that is not part of the verification.

• Any reason other than the code itself.

The only thing that the verification considers is the C code submitted to it.

8-5

8 Reviewing Verification Results

Consider the following example, paying particular attention to the dead (gray)
code following the "if" statement:

extern int read_an_input(void);

void main(void)
{
int x;
int y[100];
x = read_an_input();
y[x] = 0; // [array index within bounds]
y[x-1] = (1 / X) + X ;
if (x == 0)
y[x] = 1; // gray code on this line

}

You can see that:

• The line containing the access to the y array is unreachable.

• Therefore, the test to assess whether x = 0 is always false.

• The initial conclusion is that "the test is always false." You might
conclude that this results from input data that is not equal to 0. However,
Read_An_Input can be any value in the full integer range, so this is not the
correct explanation.

Instead, consider the execution path leading to the gray code:

• The orange check on the array access (y[x]) truncates any execution path
leading to a run-time error, meaning that subsequent lines deal with only
x = [0, 99].

• The orange check on the division also truncates all execution paths that
lead to a run-time error, so all instances where x = 0 are also stopped.
Therefore, for the code execution path after the orange division sign, x
= [1; 99].

• x is never equal to 0 at this line. The array access is green (y (x – 1).

8-6

Before You Review Polyspace® Results

Summary
In this example, all the results are located in the same procedure. However,
by using the call tree, you can follow the same process even if an orange check
results from a procedure at the end of a long call sequence. Follow the "called
by" call tree, and concentrate on explaining the issues by reference to
the code alone.

8-7

8 Reviewing Verification Results

Opening Verification Results

In this section...

“Downloading Results from Server to Client” on page 8-8

“Downloading Server Results Using Command Line” on page 8-10

“Downloading Results from Unit-by-Unit Verifications” on page 8-11

“Opening Verification Results from Project Manager Perspective” on page
8-12

“Opening Verification Results from Run-Time Checks Perspective” on page
8-13

“Exploring the Run-Time Checks Perspective” on page 8-14

“Selecting Mode” on page 8-29

“Searching Results in Run-Time Checks Perspective” on page 8-30

“Setting Character Encoding Preferences” on page 8-31

“Opening Results for Generated Code ” on page 8-33

Downloading Results from Server to Client
When you run a verification on a Polyspace server, the Polyspace software
automatically downloads the results to the client system that launched the
verification. In addition, the results are stored on the Polyspace server. You
can then download the results from the server to other client systems.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

To download verification results from a server to a client system:

1 Double-click the Polyspace Spooler icon.

8-8

Opening Verification Results

The Polyspace Queue Manager Interface opens.

2 Right-click the job that you want to view, and select Download Results .

Note To remove the job from the queue after downloading your results,
from the context menu, select Download Results And Remove From
Queue .

The Save dialog box opens.

3 Select the folder into which you want to download results.

4 Click Save to download the results and close the dialog box.

When the download is complete, a dialog box opens asking if you want to
open the Polyspace results.

8-9

8 Reviewing Verification Results

5 Click Yes to open the results.

Once you download results, they remain on the client, and you can review
them at any time using the Polyspace Run-Time Checks perspective.

Downloading Server Results Using Command Line
You can download verification results from the command line using the
psqueue-download command.

To download your results, enter the following command:

Polyspace_Common/RemoteLauncher/bin/psqueue-download <id>
<results dir>

The verification <id> is downloaded into the results folder <results dir>.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

Once you download results, they remain on the client, and you can review
them at any time using the Polyspace Run-Time Checks perspective.

The psqueue-download command has the following options:

• [-f] force download (without interactivity)

• -admin -p <password> allows administrator to download results.

• [-server <name>[:port]] selects a specific Queue Manager.

8-10

Opening Verification Results

• [-v|version] gives release number.

Note When downloading a unit-by-unit verification group, all the unit
results are downloaded and a summary of the download status for each unit
is displayed.

For more information on managing verification jobs from the command line,
see “Managing Verifications in Batch” on page 6-36.

Downloading Results from Unit-by-Unit Verifications
If you run a unit-by-unit verification, each source file in sent to Polyspace
Server individually. The queue manager displays a job for the full verification
group, as well as jobs for each unit (using a tree structure).

You can download and view verification results for the entire project, or for
individual units.

To download the results from unit-by-unit verifications:

• To download results for an individual unit, right-click the job for that unit,
then select Download Results.

The individual results are downloaded and can be viewed as any other
verification results.

• To download results for a verification group, right-click the group job, then
select Download Results.

The results for all unit verifications are downloaded, as well as an HTML
summary of results for the entire verification group.

8-11

8 Reviewing Verification Results

Opening Verification Results from Project Manager
Perspective
You can open verification results directly from the Project Browser in the
Project Manager perspective. Since each Polyspace project can contain
multiple verifications, the Project Browser allows you to quickly identify and
open the results you want to review.

To open verification results from the Project Manager:

1 Open the project containing the results you want to review.

2 In the Project Browser Source tree, navigate to the results you want to
review.

8-12

Opening Verification Results

3 Double-click the results file.

The results open in the Run-Time Checks perspective.

Note You can also drag source files from a project into the Source folder
of a verification.

Opening Verification Results from Run-Time Checks
Perspective
You use the Run-Time Checks perspective to review verification results. If
you know the location of the results file you want to review, you can open it
directly from the Run-Time Checks perspective.

8-13

8 Reviewing Verification Results

Note You can also browse and open results from the Project Browser in the
Project Manager perspective.

To open verification results from the Run-Time Checks perspective:

1 Select the Run Time Checks button in the Polyspace
Verification Environment toolbar.

2 Select File > Open Result

The Please select a file dialog box opens.

3 Select the results file that you want to view.

4 Click Open.

The results open in the Run-Time Checks perspective.

Exploring the Run-Time Checks Perspective

• “Overview” on page 8-14

• “Run-Time Checks Pane” on page 8-16

• “Source Pane” on page 8-19

• “Review Statistics Pane” on page 8-24

• “Review Details Pane” on page 8-25

• “Variable Access Pane” on page 8-26

• “Call Hierarchy Pane” on page 8-29

Overview
The Run-Time Checks perspective looks like the following figure.

8-14

Opening Verification Results

���������
�����������������
���

������
����

��������
������

�
��
����
����

��
!��
"�����

The Run-Time Checks perspective has six sections below the toolbar. Each
section provides a different view of the results. The following table describes
these views.

8-15

8 Reviewing Verification Results

This Pane... Displays...

Run-Time Checks
(Procedural entities view)

List of the checks (diagnostics) for
each file and function in the project

Source
(Source code view)

Source code for a selected check in
the procedural entities view

Review Statistics
(Coding review progress view)

Statistics about the review progress
for checks with the same type and
category as the selected check

Review Details
(Selected check view)

Details about the selected check

Variable Access
(Variables view)

Information about global variables
declared in the source code

Call Hierarchy
(Call tree view)

Tree structure of function calls

You can resize or hide any of these sections.

Run-Time Checks Pane
The Run-Time Checks pane displays a table with information about the
diagnostics for each file in the project. The Run-Time Checks pane is also
called the Procedural entities view.

8-16

Opening Verification Results

The checks in the Procedural entities view are colored as follows:

• Red – Indicates code that always has an error (errors occur every time
the code is executed).

• Gray – Indicates unreachable code (dead code).

• Orange – Indicates unproven code (code might have a run-time error).

• Green – Indicates code that never has a run-time error (safe code).

8-17

8 Reviewing Verification Results

Polyspace software assigns files and functions the color of the most severe
error found in that file. For example, the file example.c is red because it
has a run-time error.

The first column of the table is the procedural entity (the file or function).
The following table describes some of the other columns in the procedural
entities view.

Column
Heading

Indicates

Number of red checks (operations where an error always
occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (operations where an error never
occurs)

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

You can select which columns appear in the procedural entities view by
right-clicking the Procedural entities column heading, and selecting the
columns you want to display.

Tip If you see three dots in place of a heading, , resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

Unreachable Functions. If the verification detects functions that cannot
be reached from the main program, it does not verify them. The software
considers these functions to be unreachable, and highlights them in gray in
the procedural entities view.

8-18

Opening Verification Results

In this example, the function unused_fonction is considered unreachable,
and therefore was not verified.

Source Pane
The Source pane shows the source code with colored checks highlighted. The
Source Pane is also called the Source code view.

8-19

8 Reviewing Verification Results

Tooltips. Placing your cursor over a check displays a tooltip that provides
ranges for variables, operands, function parameters, and return values. For
more information on tooltips, see “Using Range Information in Run-Time
Checks Perspective” on page 8-86.

Examining Source Code. In the Source pane, if you right-click a text string,
the context menu provides options that help you to examine your code. For
example, right-click the global variable PowerLevel:

8-20

Opening Verification Results

Use the following options to examine and navigate through your code:

• Search “PowerLevel” in current source code— List all occurrences of
the string in the Search pane.

• Goto Line— Open the Goto Line dialog box. If you specify a line number
and click Enter, the software displays the specified line of code.

• Open Declaration— If the selected text is a global variable or function,
display the line of code that contains the declaration.

• Open Source File— Open the source file with your text editor.

Additional Information on checks. Clicking a check opens the check
details tab that provides more information about the check.

8-21

8 Reviewing Verification Results

Managing Multiple Files in Source Pane. You can view multiple source
files in the Source pane. By default, the files are displayed as tabs in the
Source pane.

Right-click any tab in the Source pane toolbar to manage source files.

8-22

Opening Verification Results

From the Source pane context menu, you can:

• Close – Close the currently selected source file.

• Close Others – Close all source files except the currently selected file.

• Close All – Close all source files.

• Next – Display the next tab.

• Previous – Display the previous tab.

8-23

8 Reviewing Verification Results

• New Horizontal Group – Split the Source window horizontally to display
the selected source file below another file.

• New Vertical Group – Split the Source window vertically to display the
selected source file side-by-side with another file.

• Floating – Display the current source file in a new window, outside the
Source pane.

Review Statistics Pane
The Review Statistics pane displays statistics about how many checks you
have reviewed. As you review checks, the software updates these statistics.
The Review Statistics pane is also called the Coding review progress view.

The Count column displays a ratio and the Progress column displays the
equivalent percentage.

The first row displays the ratio of justified checks to total checks that have
the same color and category of the current check. In this example, the first
row displays the ratio of reviewed red IDP checks to total red IDP errors in
the project.

The second row displays the ratio of justified checks to total checks that have
the color of the current check. In this example, this is the ratio of red errors
reviewed to total red errors in the project.

8-24

Opening Verification Results

The last row displays the ratio of the number of green checks to the total
number of checks, providing an indicator of the reliability of the software.

Review Details Pane

The Review Details Pane displays information about the current check. The
Review Details pane is also called the Selected check view.

When reviewing checks, you use the Selected check view to mark checks as
Justified, and enter comments to describe the results of your review. This
helps you track the progress of your review and avoid reviewing the same
check twice.

For more information, see “Reviewing and Commenting Checks ” on page 8-59.

Error Call Graph. Click the Show error call graph icon. in the
Review Details pane toolbar to display the call sequence that leads to the
code associated with a check.

8-25

8 Reviewing Verification Results

For more information, see “Displaying the Call Sequence for a Check” on
page 8-51.

Variable Access Pane
The Variable Access pane, which is also called the Variables view, displays
global variables. The pane shows where in the source code the variables are
read or written to, and provides:

• Information about the variables and associated fields. For example,
number of read/write accesses, data type, and value range.

• A hierarchical view of structured variables.

8-26

Opening Verification Results

Non Shared Variables. Click the Non-Shared Variables button in the
Variable Access pane toolbar to show or hide non-shared variables.

Concurrent Access Graph. Click the Show Access Graph button in the
Variable Access pane toolbar to display a graph of read and write access for
the selected variable.

8-27

8 Reviewing Verification Results

For more information, see “Displaying the Access Graph for Variables” on
page 8-52.

Legend Information. To display the legend for a variable, right-click the
variable and select Show legend.

8-28

Opening Verification Results

Call Hierarchy Pane

The Call Hierarchy pane displays the call tree of functions in the source code.
You can use the call tree view to easily navigate up and down the call tree.
The Call Hierarchy pane is also called the Call Tree view.

Callers and Callees. Click the buttons in the Call Tree View
toolbar to show or hide callers and callees.

Function Definitions. To go directly to the definition of a function, right-click
the function call and select Go to definition.

Selecting Mode
You can review verification results in manual mode or assistant mode:

• In manual mode, you decide how you review the results.

• In assistant mode, Polyspace software guides you through the results.

8-29

8 Reviewing Verification Results

By default, the Run-Time Checks perspective opens in assistant mode. You
can switch between assistant and manual mode using the Assistant slider in
the Run-Time Checks toolbar.

Move the slider to Off to select manual mode, or 1 to select assistant mode.

Searching Results in Run-Time Checks Perspective
You can search your results and source code using the Search feature in the
Run-Time Checks perspective toolbar.

The Search toolbar allows you to quickly enter search terms, specify search
options, and set the scope for your search.

You can limit the scope of your search to only file content, only expanded
nodes, or you can search the complete hierarchy.

When you perform a search, your search results are reported in the Search
pane.

8-30

Opening Verification Results

Search results are organized by location:

• Source Code View

• Run-Time Checks View

• Call Hierarchy View

• Variable Access View

You can use the four filter buttons in the Search pane toolbar to hide results
from any of these locations.

Setting Character Encoding Preferences
If the source files that you want to verify are created on an operating system
that uses different character encoding than your current system (for example,
when viewing files containing Japanese characters), you receive an error
message when you view the source file or run certain macros.

The Character encoding option allows you to view source files created on
an operating system that uses different character encoding than your current
system.

8-31

8 Reviewing Verification Results

To set the character encoding for a source file:

1 Select Options > Preferences .

The Polyspace Preferences dialog box opens.

2 Select the Character encoding tab.

8-32

Opening Verification Results

3 Select the character encoding used by the operating system on which the
source file was created.

4 Click OK.

5 Close and restart the Polyspace Verification Environment to use the new
character encoding settings.

Opening Results for Generated Code
When opening results for automatically generated code, the software must
know which code generator created the code, so that it can interpret comments
and create back-to-source links in the Run-Time checks perspective.

If you launched the verification using the Polyspace Model Link SL or
Polyspace Model Link TL products, the software automatically creates a
file in the results folder called code_generator_used.txt to provide this
information. However, if you did not use these products to launch verification,
you must provide this information manually.

To manually specify which code generator created the code:

1 Open your results in the Run-Time Checks perspective.

2 Select Review > Code Generator Support > code_generator

Manually Creating the Code Generator Text File
To avoid specifying the code generator each time you open your results, you
can manually create a file named code_generator_used.txt in your results
folder. The software will then automatically use this file each time you open
the results.

The format of this file is the following:

<Code generator>
MATLABROOT=<Path to MATLAB>
ModelVersion=<model name>:<model version>

where <Code generator> can be either RTWEmbeddedCoder or TargetLink.

8-33

8 Reviewing Verification Results

For Example:

RTWEmbeddedCoder
MATLABROOT=C:\MATLAB\R2010b
ModelVersion=demo_ml:1.94

8-34

Reviewing Results in Assistant Mode

Reviewing Results in Assistant Mode

In this section...

“What Is Assistant Mode?” on page 8-35

“Switching to Assistant Mode” on page 8-36

“Selecting the Methodology and Criterion Level” on page 8-38

“Viewing Methodology Requirements” on page 8-38

“Defining a Custom Methodology” on page 8-41

“Reviewing Checks” on page 8-43

“Saving Review Comments” on page 8-46

What Is Assistant Mode?
In assistant mode, Polyspace software chooses the checks for you to review
and the order in which you review them. By default, the Run-Time Checks
perspective opens in assistant mode.

Polyspace software presents checks in this order:

1 All red checks (an error always occurs).

2 Orange checks known to produce errors in some situations (dark orange).
For example, red for one call to a procedure and green for another.

3 Some gray checks (UNR checks that are not nested within dead code
blocks).

4 Other orange checks (according to the selected methodology and criterion
level).

For more information about methodologies and criterion levels, see “Selecting
the Methodology and Criterion Level” on page 8-38.

8-35

8 Reviewing Verification Results

Switching to Assistant Mode
The Run-Time Checks perspective opens in assistant mode by default, but you
can switch between modes.

To switch from manual to assistant mode, move the Assistant slider to 1 in
the Run-Time Checks toolbar.

When you switch to assistant mode:

• The Assistant Checks tab opens in the Run-Time Checks pane , displaying
the checks you need to review.

8-36

Reviewing Results in Assistant Mode

• The toolbar displays controls specific to assistant mode.

The controls for assistant mode include:

• A menu for selecting the review methodology for orange checks.

• A slider for selecting the criterion level within that methodology.

8-37

8 Reviewing Verification Results

• Arrows for navigating through the reviews.

Selecting the Methodology and Criterion Level
A methodology defines which orange checks you review in assistant mode.
Each methodology has three criterion levels, corresponding to different
development phases, with increasing review requirements. As the criterion
level increases, you review more checks.

To select a methodology and level:

1 From the methodology menu, select Methodology for C.

2 Select the appropriate level on the level slider.

For the configuration Methodology for C, the following table describes the
three levels.

Level Description

1 Fresh code

2 Unit tested code

3 Code Review

These three levels correspond to phases of the development process.

Viewing Methodology Requirements
A methodology defines which orange checks you review in assistant mode. You
can view the requirements of each methodology in the Preferences dialog box.

8-38

Reviewing Results in Assistant Mode

Note You cannot change the parameters specified in predefined
methodologies, such as Methodology for C, but you can create your own
custom methodologies.

To examine the configuration for Methodology for C:

1 Select Options > Preferences.

The Polyspace Preferences dialog box opens.

2 Select the Assistant configuration tab.

You see the configuration for Methodology for C.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

8-39

8 Reviewing Verification Results

For example, the table specifies that you review five orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the toolbar (in assistant mode).

8-40

Reviewing Results in Assistant Mode

The table describes the criterion names for the configuration Methodology
for C.

Criterion Name in the Tooltip

1 Fresh code

2 Unit tested

3 Code Review

These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Defining a Custom Methodology
A methodology defines which orange checks you review in assistant mode.
You cannot change the predefined methodologies, such as Methodology for C,
but you can define your own methodology.

Custom methodologies can specify either a specific number of orange checks
to review, or a minimum percentage of orange checks that must be reviewed.
This percentage is calculated as:
(green checks + reviewed orange checks) / (green checks + total orange checks).

To define a custom methodology:

1 Select Options > Preferences.

8-41

8 Reviewing Verification Results

The Polyspace Preferences dialog box opens.

2 Select the Assistant configuration tab.

3 In the Configuration set drop-down menu, select Add a set.

The Create a new set dialog box opens.

4 Enter a name for the new configuration set, then click Enter.

5 If you would like to review orange checks by percentage, select Set
number of checks to review as percentage of green and justified
orange checks.

6 Enter a name for each criteria level.

7 Enter the total number of checks (or percentage of checks) to review for
each type of check, and each criteria level.

8-42

Reviewing Results in Assistant Mode

8 Click OK to save the methodology and close the dialog box.

Reviewing Checks
In assistant mode, you review checks in the order in which Polyspace software
presents them:

8-43

8 Reviewing Verification Results

• All reds.

• All blocks of gray checks (the first check in each unreachable function).

• Orange checks, according to the methodology and criterion level that you
select.

To review these checks:

1 In the assistant mode toolbar, click the forward arrow .

• The Assistant Checks tab shows the current check.

8-44

Reviewing Results in Assistant Mode

• The Source pane displays the source code for this check.

• The Review Details pane displays information about this check.

Note You can also display the call sequence for a check. See “Displaying
the Call Sequence for a Check” on page 8-51.

8-45

8 Reviewing Verification Results

2 Review the current check.

After you review a check, you can classify the check and enter comments
to describe the results of your review. You can also mark the check as
Justified to help track your review progress. For more information, see
“Tracking Review Progress” on page 8-58.

3 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box opens asking if you want to start again
from the first check.

4 Click No.

Saving Review Comments
After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments:

1 Select File > Save.

Your comments are saved with the verification results.

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

8-46

Reviewing Results in Manual Mode

Reviewing Results in Manual Mode

In this section...

“What Is Manual Mode?” on page 8-47

“Switching to Manual Mode” on page 8-47

“Selecting a Check to Review” on page 8-47

“Displaying the Call Sequence for a Check” on page 8-51

“Displaying the Access Graph for Variables” on page 8-52

“Filtering Checks” on page 8-53

“Saving Review Comments” on page 8-57

What Is Manual Mode?
Manual mode displays all checks from the verification. You decide which
checks to review and in what order to review them.

Switching to Manual Mode
By default, the Run-Time Checks perspective opens in assistant mode. To
switch from assistant to manual mode:

• Move the Assistant slider to Off in the Run-Time Checks toolbar.

The toolbar displays buttons and menus specific to manual mode.

Selecting a Check to Review
To review a check in manual mode:

1 In the procedural entities section of the Run-Time Checks pane, expand
any file containing checks.

2 Expand the procedure containing the check that you want to review.

8-47

8 Reviewing Verification Results

You see a color-coded list of the checks:

Each item in the list of checks has an acronym that identifies the type
of check and a number. For example, IDP.8, IDP stands for Illegal
Dereferenced Pointer.

For more information about different types of checks, see “Check
Descriptions”in the Polyspace Products for C Reference.

3 Click the check that you want to review.

The Source pane displays the section of source code where this error occurs.

8-48

Reviewing Results in Manual Mode

4 Place your cursor over any colored check in the code.

A tooltip provides ranges for variables, operands, function parameters, and
return values. For more information on these tooltips, see “Using Range
Information in Run-Time Checks Perspective” on page 8-86.

8-49

8 Reviewing Verification Results

5 In the code, click the red check.

The check details tab opens, displaying additional information about the
error.

8-50

Reviewing Results in Manual Mode

After you review a check, you can enter comments to describe the results of
your review. You can also mark the check as Reviewed to help track your
review progress. For more information, see “Tracking Review Progress” on
page 8-58.

Displaying the Call Sequence for a Check
You can display the call sequence that leads to the code associated with a
check. To see the call sequence for a check:

1 In the procedural entities window, expand the procedure containing the
check that you want to review.

2 Select the check that you want to review.

3 In the Review Details pane toolbar, click the error call graph button.

A window displays the call graph.

8-51

8 Reviewing Verification Results

The call graph displays the code associated with the check.

Displaying the Access Graph for Variables
You can display the access sequence for any variable that is read or written
in the code.

To see the access graph:

1 Select the Variables View.

2 Select the variable that you want to view.

3 In the Variable Access pane toolbar, click the Show Access Graph button.

A window displays the access graph.

8-52

Reviewing Results in Manual Mode

The access graph displays the read and write access for the variable.

4 Click any object in the graph to navigate to that function in the Procedural
entities view and Source code view.

Filtering Checks
You can filter the checks that you see in the Run-Time Checks perspective so
that you can focus on certain checks. Polyspace software allows you to filter
your results in several ways. You can filter by:

• Check category (ZDV, IDP, NIP, etc.)

• Color of check (gray, orange, green)

• Justified or unjustified

• Classification

• Status

To filter checks, select one of the filter buttons in the Run-Time checks toolbar.

8-53

8 Reviewing Verification Results

Tip The tooltip for a filter button describes what filter the button activates.

Example: Filtering IRV Checks

You can use an RTE filter to hide a given check category, such as IRV. When
a filter is enabled, you do not see that check category.

To filter IRV checks in the Square_Root() procedure:

1 Expand Square_Root().

Square_Root()has seven checks: four are green, one is red, and two are
gray.

2 Click the RTE filter icon .

3 Clear the IRV option.

8-54

Reviewing Results in Manual Mode

The software hides the IRV check for Square_Root().

4 Select the IRV option to redisplay the IRV check.

Note When you filter a check category, red checks of that category are not
hidden. For example, if you filter IDP checks, you still see IDP.8 under
Pointer_Arithmetic().

Example: Filtering Green Checks

You can use a Color filter to hide certain color checks. When a filter is
enabled, you do not see that color check.

8-55

8 Reviewing Verification Results

To filter green checks in the Square_Root() procedure:

1 Expand Square_Root().

Square_Root()has seven checks: four are green, one is red, and two are
gray.

2 Click the Color filter icon .

3 Clear the Green Checks option.

The software hides the green checks.

8-56

Reviewing Results in Manual Mode

Saving Review Comments
After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments:

1 Select File > Save.

Your comments are saved with the verification results.

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

8-57

8 Reviewing Verification Results

Tracking Review Progress

In this section...

“Checking Coding Review Progress ” on page 8-58

“Reviewing and Commenting Checks ” on page 8-59

“Defining Custom Status ” on page 8-61

“Tracking Justified Checks in Procedural Entities View” on page 8-63

“Commenting Code to Justify Known Checks” on page 8-64

Checking Coding Review Progress
When you select a check in either Assistant or Manual mode, the Review
Statistics pane displays statistics about the review progress for that category
and severity of error.

The Count column displays a ratio and the Progress column displays the
equivalent percentage.

The first row displays the ratio of justified checks to total checks that have
the same color and category of the current check. In this example, the first
row displays the ratio of reviewed red IDP checks to total red IDP errors in
the project.

8-58

Tracking Review Progress

The second row displays the ratio of justified checks to total checks that have
the color of the current check. In this example, this is the ratio of red errors
reviewed to total red errors in the project.

The last row displays the ratio of the number of green checks to the total
number of checks, providing an indicator of the reliability of the software.

When you select the Justified checkbox for the check, the software updates
the ratios of errors reviewed to total errors in the Coding review progress
part of the window.

Reviewing and Commenting Checks
When reviewing checks in either Assistant or Manual mode, you can mark
checks Justified, and enter comments to describe the results of your review.
This helps you track the progress of your review and avoid reviewing the
same check twice.

To review and comment a check:

1 Select the check that you want to review.

The Review Details pane displays information about the current check.

8-59

8 Reviewing Verification Results

2 After you review the check, select a Classification to describe the
seriousness of the issue:

• High

• Medium

• Low

• Not a defect

3 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

• No Action Planned

• Other

• Restart with different options

• Undecided

8-60

Tracking Review Progress

Note You can also define your own statuses. See “Defining Custom Status
” on page 8-61.

4 In the comment box, enter additional information about the check.

5 Select the check box to indicate that you have justified this check.

The software updates the ratios of errors justified to total errors in the
Review Statistics pane of the Run-Time Checks perspective window.

Defining Custom Status
In addition to the Predefined statuses for reviewing checks, you can define
your own statuses. Once you define a status, you can select it from the Status
menu in the Selected check view.

To define custom statuses:

1 Select Options > Preferences.

2 Select the Review Statuses tab.

8-61

8 Reviewing Verification Results

3 Enter your new status at the bottom of the dialog box, then click Add.

The new status appears in the Status list.

8-62

Tracking Review Progress

4 Click OK to save your changes and close the dialog box.

When reviewing checks, you can select the new status from the Status menu
in the Selected check view.

Tracking Justified Checks in Procedural Entities View
You can use the Run-Time checks pane to display which checks have been
justified and the Status used to describe each check.

8-63

8 Reviewing Verification Results

Tip If you do not see the Justified column, resize the Procedural entities
view to display the column. If it does not appear, right click the Procedural
entities column heading and select Justified.

You can select the Justified check box to mark a check as justified. Selecting
this check box also automatically:

• Selects the Justified check box for that check in the Review Details pane.

• Updates the counts in the Review Statistics pane.

Commenting Code to Justify Known Checks
You can place comments in your code that inform Polyspace software of
known checks. This allows you to highlight and categorize checks identified in

8-64

Tracking Review Progress

previous verifications, so that you can focus on new checks when reviewing
your verification results.

The Run-Time Checks perspective displays the information that you provide
within your code comments, and marks the checks as Justified.

For more information, see “Annotating Code to Indicate Known Coding Rule
Violations” on page 5-34.

Copying and Pasting Justifications
Instead of typing the full syntax of an annotation comment in your source code,
you can copy an annotation template from the Run-Time Checks perspective,
paste it into your source code, and modify the template to comment the check.

To copy the justification template to the clipboard:

1 Right-click anywhere in the Code pane, then select Add Pre-Justification
to Clipboard.

The justification string is copied to the clipboard.

2 Open the source file containing the check you want to justify.

3 Navigate to the code you want to comment, and paste the justification
template string on the line immediately before the line you want to
comment.

4 Modify the template text to comment the code appropriately.

8-65

8 Reviewing Verification Results

5 Save the file.

8-66

Importing and Exporting Review Comments

Importing and Exporting Review Comments

In this section...

“Reusing Review Comments” on page 8-67

“Importing Review Comments from Previous Verifications” on page 8-68

“Exporting Review Comments to Spreadsheet” on page 8-69

“Viewing Checks and Comments Report” on page 8-69

Reusing Review Comments
After you have reviewed verification results on a module, you can reuse your
review comments with subsequent verifications of the same module. This
allows you to avoid reviewing the same check twice, or to compare results
over time.

The Run-Time Checks perspective allows you to either:

• Import review comments from another set of results into the current
results.

• Export review comments from the current results to a spreadsheet.

You can also generate a report that compares the source code and verification
results from two verifications, and highlights differences in the results.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current
code. Open the Import/Export Report to see changes that affect your review
comments.

8-67

8 Reviewing Verification Results

Importing Review Comments from Previous
Verifications
If you have previously reviewed verification results for a module and saved
your comments, you can import those comments into the current verification,
allowing you to avoid reviewing the same check twice.

Caution The comments you import replace any existing comments in the
current results.

To import review comments from a previous verification:

1 Open your most recent verification results in the Run-Time Checks
perspective.

2 Select Review > Import > Import Comments.

3 Navigate to the folder containing your previous results.

4 Select the results (.RTE) file, then click Open.

The review comments from the previous results are imported into the
current results, and the Import checks and comments report opens. For
more information, see “Viewing Checks and Comments Report” on page
8-69.

Once you import checks and comments, the go to next check icon in
assistant mode will skip any justified checks, allowing you to review only
checks that you have not justified previously. If you want to view reviewed

checks, click the go to next reviewed check icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

8-68

Importing and Exporting Review Comments

Exporting Review Comments to Spreadsheet
After you have reviewed verification results, you can export your review
comments to .CSV format, for use with the PolyspaceMacro Excel® Report.

To export review comments to spreadsheet format:

1 Select Review > Export in Spreadsheet Format.

2 Navigate to the Polyspace-Doc folder
within your results folder. For example:
polypace_project\Verification_(1)\Result_(1)\Polyspace-Doc

3 Select Export.

The review comments from the current results are exported into .CSV
format.

For information on generating the Excel Report, see “Generating Excel
Reports” on page 8-77.

Viewing Checks and Comments Report
Importing review comments from a previous verification can be extremely
useful, since it allows you to avoid reviewing checks twice, and to compare
verification results over time.

However, if your code has changed since the previous verification, or if you
have upgraded to a new version of the software, the imported comments may
not be applicable to your current results. For example, the color of a check
may have changed, or the justification for an orange check may no longer be
relevant to the current code.

The Import/Export checks and comments report allows you to compare the
source code and verification results from a previous verification to the current
verification, and highlights differences in the results.

To view the Import/Export checks and comments report:

1 Select Review > Import > Open Import Report.

8-69

8 Reviewing Verification Results

The Import/Export checks and comments report opens, highlighting
differences in the two results, such as unmatched lines and changes to the
color of checks.

If the color of a check changes, the previous review comments are imported,
but the check is not marked as reviewed.

If a check no longer appears in the code, the report highlights the change, but
the software does not import any comments on the check.

8-70

Generating Reports of Verification Results

Generating Reports of Verification Results

In this section...

“Polyspace Report Generator Overview” on page 8-71

“Generating Verification Reports” on page 8-73

“Running the Report Generator from the Command Line” on page 8-75

“Automatically Generating Verification Reports” on page 8-76

“Customizing Verification Reports” on page 8-76

“Generating Excel Reports” on page 8-77

Polyspace Report Generator Overview
The Polyspace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

Report Templates
The Polyspace Report Generator provides the following report templates:

• Coding Rules Report – Provides information about compliance with
MISRA C Coding Rules, as well as Polyspace configuration settings for
the verification.

• Developer Report – Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
Polyspace configuration settings for the verification. Detailed results are
sorted by type of check (Proven Run-Time Violations, Proven Unreachable
Code Branches, Unreachable Functions, and Unproven Run-Time Checks).

• Developer Review Report – Provides the same information as the
Developer Report, but reviewed results are sorted by review classification
(High, Medium, Low, Not a defect) and status, and untagged checks are
sorted by file location.

• Developer with Green Checks Report – Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

• Quality Report – Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing

8-71

8 Reviewing Verification Results

distributions of checks per file, and Polyspace configuration settings for
the verification.

• Software Quality Objectives Report – Provides comprehensive
information on software quality objectives (SQO), including code metrics,
code analysis (coding-rules checker results), code verification (run-time
checks), and the configuration settings for the verification. The code
metrics section provides is the same information displayed in the Polyspace
Metrics web interface.

Report Formats
The Polyspace Report Generator allows you to generate verification reports in
the following formats:

• HTML

• PDF

• RTF

• DOC (Microsoft® Word)

• XML

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

Note You must have Microsoft Office installed to view .RTF format reports
containing graphics, such as the Quality report.

Gray Checks Reported in Summary vs. Check Details
When you generate a report, the number of gray checks reported in the Code
Verification Summary section may differ from the number of gray checks
listed in the Run-Time Checks Results section.

8-72

Generating Reports of Verification Results

This happens because the summary provides the total number of gray checks
in your results, while the detailed tables in the Run-Time Checks Results
section does not list every gray check.

In the details section:

• Only UNR checks are listed, since all gray checks derived from a UNR
check do not have to be justified.

• All gray checks derived from a red check are not listed, since they all have
the same cause.

Generating Verification Reports
You can generate reports for any verification results using the Polyspace
Report Generator.

To generate a verification report:

1 In the Run-Time Checks perspective, open your verification results.

2 Select Run > Run Report > Run Report.

The Run Report dialog box opens.

8-73

8 Reviewing Verification Results

3 In the Select Report Template section, select the type of report that you
want to run.

4 If your results are part of a unit-by-unit verification, you can generate
a report for the current unit results, or for the entire project. Select
Generate a single report including all unit results to combine all
unit results in the report.

5 Select the Output folder in which to save the report.

6 Select the Output format for the report.

7 Click Run Report.

The software creates the specified report.

Note If you generate an RTF format report on a Linux system, the
software does not open the report at the end of the generation process.

8-74

Generating Reports of Verification Results

Running the Report Generator from the Command
Line
You can also run the Report Generator, with options, from the command
line, for example:

C:\>\Polyspace\Polyspace_Common\ReportGenerator\wbin\report-generator
-template path -format type -results-dir folder_paths

For information about the available options, see the following sections.

-template path
Specify the path to a valid Report Generator template file, for example,

C:\Polyspace\Polyspace_Common\ReportGenerator\templates\Developer.rpt

Other supplied templates are CodingRules.rpt,
Developer_WithGreenChecks.rpt, DeveloperReview.rpt, and Quality.rpt.

-format type
Specify the format type of the report. Use HTML, PDF, RTF, WORD, or XML. The
default is RTF.

-help or -h
Displays help information.

-output-name filename
Specify the filename for the report generated.

-results-dir folder_paths
Specify the paths to the folders that contain your verification results.

You can generate a single report for multiple verifications by specifying
folder_paths as follows:

"folder1, folder2, folder3,..., folderN"

8-75

8 Reviewing Verification Results

where folder1, folder2, ... are the file paths to the folders that contain
the results of your verifications (normal or unit-by-unit). For example,

"C:\Results1,C:\Recent\results,C:\Old"

If you do not specify a folder path, the software uses verification results from
the current folder.

Automatically Generating Verification Reports
You can specify that Polyspace software automatically generate reports for
each verification using an option in the Project Manager perspective.

Note You cannot generate reports of software quality objectives
automatically.

To automatically generate reports for each verification:

1 In the Project Manager perspective, open your project.

2 In the Analysis options section of the Configuration pane, expand General.

You see the General options.

3 Select Report Generation.

4 Select the Report template name.

5 Select the Output format for the report.

6 Save your project.

Customizing Verification Reports
If you have MATLAB® Report Generator™ software installed on your system,
you can customize the Polyspace report templates or create your own reports.
You can then generate these custom reports using the Polyspace Report
Generator.

8-76

Generating Reports of Verification Results

Before you can customize Polyspace reports, you must configure the MATLAB
Report Generator software to access the following folders:

• Custom components –
Polyspace_Common/ReportGenerator/components

• Report templates – Polyspace_Common/ReportGenerator/templates

To customize a Polyspace report:

1 Open MATLAB.

2 Add the Polyspace reports custom components folder to the MATLAB
search path, using the following command:

addpath(`Polyspace_Common/ReportGenerator/components')

3 Set the current folder in MATLAB to the Polyspace reports template folder,
using the following command:

cd('Polyspace_Common/ReportGenerator/templates')

4 Start the Report Editor GUI using the following command:

report

For more information on using the MATLAB Report Generator software, refer
to the MATLAB Report Generator User’s Guide.

Note To access custom reports in the Polyspace
Report Generator, you must save the report template
in:Polyspace_Common/ReportGenerator/templates.

Generating Excel Reports
You can generate Microsoft Excel reports of your verification results. These
reports contain a summary of the information displayed in the Run-Time
Checks perspective. Excel Reports can also contain review comments, if you
export your comments to spreadsheet format before generating the report.

8-77

8 Reviewing Verification Results

Note Excel reports do not use the Polyspace Report Generator.

The Excel report contains the following sheets:

• RTE Checks – List of all checks, as displayed in the Procedural Entities
view.

• Launching Options – Analysis options used for the verification.

• Check Synthesis – Statistics showing RTE checks by category, including
the Selectivity of each category.

• Checks by file – Statistics showing distribution of RTE checks by file.

• Orange Check Distribution – Graph showing orange check distribution
by category.

• Checks per file – Graph showing check distribution by file.

• Global Data Dictionary – Full list of global variables and where in
the source code they are read or written to, as displayed in the Variables
Access pane. .

• Shared Globals – Protected and non-protected global variables.

• Application Call Tree – Full call-tree of functions in the source code, as
displayed in the Call Hierarchy pane.

To generate an Excel report of your verification results:

1 (Optional) If you want your report to contain review comments, export
your review comments to spreadsheet format. For more information, see
“Exporting Review Comments to Spreadsheet” on page 8-69.

2 In your results folder, navigate to the Polyspace-Doc folder. For
example:polypace_project\results\Polyspace-Doc.

The folder should have the following files:

Example_Project_Call_Tree.txt
Example_Project_RTE_View.txt
Example_Project_Variable_View.txt

8-78

Generating Reports of Verification Results

Example_Project-NON-SCALAR-TABLE-APPENDIX.ps
Polyspace_Macros.xls

The first three files correspond to the call tree, RTE, and variable views in
the Polyspace Run-Time Checks Perspective window.

3 Open the macros file Polyspace_Macros.xls.

You see a security warning dialog box.

4 Click Enable Macros.

A spreadsheet opens. The top part of the spreadsheet looks like the
following figure.

5 Specify the report options that you want, then click Generate Polyspace
Results Synthesis.

The synthesis report combines the RTE, call tree, and variables views into
one report.

TheWhere is the Polyspace RTE View text file dialog box opens.

6 In Look in, navigate to the Polyspace-Doc folder in your results folder.
For example:polypace_project\results\Polyspace-Doc.

7 Select Project_RTE_View.txt.

8-79

8 Reviewing Verification Results

8 Click Open to close the dialog box.

The Where should I save the analysis file? dialog box opens.

9 Keep the default file name and file type.

10 Click Save to close the dialog box and start the report generation.

Microsoft Excel opens with the spreadsheet that you generated. This
spreadsheet has several worksheets.

8-80

Generating Reports of Verification Results

11 Select the Check Synthesis tab to view the worksheet showing statistics
by check category.

8-81

8 Reviewing Verification Results

8-82

Using Polyspace® Results

Using Polyspace Results

In this section...

“Review Runtime Errors: Fix Red Errors” on page 8-83

“Red Checks Where Gray Checks were Expected” on page 8-84

“Using Range Information in Run-Time Checks Perspective” on page 8-86

“Using Pointer Information in Run-Time Checks Perspective” on page 8-91

“Why Review Dead Code Checks” on page 8-95

“Reviewing Orange Checks” on page 8-97

“Integration Bug Tracking” on page 8-97

“How to Find Bugs in Unprotected Shared Data” on page 8-98

“Dataflow Verification” on page 8-99

“Data and Coding Rules” on page 8-99

“Potential Side Effect of a Red Error” on page 8-100

“Relationships Between Variables” on page 8-101

Review Runtime Errors: Fix Red Errors
All Runtime Errors highlighted by Polyspace verification are determined
by reference to the language standard, and are sometimes implementation
dependant — that is, they may be acceptable for a particular compiler but
unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation
of 127+1 cannot be 128, but depending on the environment a “wrap around”
might be performed to give a result of -128.

This result is mathematically incorrect, and could have serious consequences
if, for example, the computation represents the altitude of a plane.

By default, Polyspace verification does not make assumptions about the way
you use a variable. Any deviation from the recommendations of the language
standard is treated as a red error, and must therefore be corrected.

8-83

8 Reviewing Verification Results

Polyspace verification identifies two kinds of red checks:

• Red errors which are compiler-dependant in a specific way. A Polyspace
option may be used to allow particular compiler specific behavior . An
example of a Polyspace option to permit compiler specific behavior is
the option to force “IN/OUT” ADA function parameters to be initialized.
Examples in C include options to deal with constant overflows, shift
operation on negative values, and so on.

• You must fix all other red errors. They are bugs.

Most of the bugs you find are easy to correct once the software identifies
them. Polyspace verification identifies bugs regardless of their consequence,
or how difficult they may be to correct.

Red Checks Where Gray Checks were Expected
By default, Polyspace verification continues when it finds a red error. This
is used to deal with two primary circumstances:

• A red error appears in code which was expected to be dead code.

• A red error appears which was expected, but the verification is required
to continue.

Polyspace verification performs an upper approximation of variables.
Consequently, it may be true that Polyspace software verifies a particular
branch of code as though it was accessible, despite the fact that it could
never be reached during “real life” execution. In the example below, there
is an attempt to compare elements in an array, and the verification is not
able to conclude that the branch was unreachable. Polyspace verification
may conclude that an error is present in a line of code, even when that code
cannot be reached.

Consider the figure below.

8-84

Using Polyspace® Results

As a result of imprecision, each color shown can be approximated by a color
immediately above it in the grid. It is clear that green or red checks can be
approximated by orange ones, but the approximation of gray checks is less
obvious.

During Polyspace verification, data values possible at execution time are
represented by supersets including those values - and possibly more besides.

Gray code represents a situation where no valid data values exist. Imprecision
means that such situation can be approximated

• by an empty superset;

• by a nonempty super set, members of which may generate checks of any
color.

Therefore, the verification cannot be guaranteed to find all dead code.

However, there is no problem in having gray checks approximated by red
ones. Where any red error is encountered, all instructions which follow it in
the relevant branch of execution are aborted as usual. At execution time, it is
also true that those instructions would not be executed.

Consider the following example:

if (condition) then action_producing_a_red;

8-85

8 Reviewing Verification Results

After the "if" statement, the only way execution can continue is if the condition
is false; otherwise a red check would be produced. Therefore, after this
branch the condition is always false. For that reason, the code verification
continues, even with a specific error. Remember that this propagates values
throughout your application. None of the execution paths leading to a
run-time error will continue after the error and if the red check is a real
problem rather than an approximation of a gray check, then the verification
will not be representative of how the code will behave when the red error
has been addressed.

It is applicable on the current example:

1 int a[] = { 1,2,3,4,5,7,8,9,10 };
2 void main(void)
3 {
4 int x=0;
5 int tmp;
6 if (a[5] > a[6])
7 tmp = 1 /x; // RED ERROR [scalar division by zero] in gray code
8 }

Using Range Information in Run-Time Checks
Perspective

• “Viewing Range Information” on page 8-86

• “Interpreting Range Information” on page 8-87

• “Diagnosing Errors with Range Information” on page 8-89

Viewing Range Information
You can see range information associated with variables and operators within
the Source pane. Place your cursor over an operator or variable. A tooltip
message displays the range information, if it is available.

Note The displayed range information represents a superset of dynamic
values, which the software computes using static methods.

8-86

Using Polyspace® Results

If a line of code is entirely the same color, selecting (clicking) the line opens
the Expanded Source Code tab. Place your cursor over the required operator
or variable in this window to view range information. In addition, you can
select the line in the Expanded Source Code tab to display error or warning
messages (along with range information) in the Review Details pane.

In the Source pane, if a line of code contains different colored checks, then
selecting a check displays the error or warning message along with range
information in the selected check view.

Note Computing range information for reads and operators may take a
long time. You can reduce verification time by limiting the amount of range
information displayed in verification results. See “Less range information
(-less-range-information)” in the Polyspace Products for C Reference Guide.

Interpreting Range Information
The software uses the following syntax to display range information of
variables:

name (data_type) : [min1 .. max1] or [min2 .. max2] or [min3 .. max3] or exact value

In the following example,

the tooltip message indicates the variable PowerLevel is a 32-bit integer
with the value –10000.

In the next example,

8-87

8 Reviewing Verification Results

the tooltip message indicates that the variable advance is a 32-bit float that
lies between either –1.0001 and –4.6566E-10 or 1.9999E-2 and 3.3334E-1

The tooltip message also indicates whether the variable occupies the full
range:

The tooltip message indicates that the returned value of the function
read_on_bus is a 32-bit integer that occupies the full range of the data type,
-2147483648 to 2147483647.

With operators, the software displays associated information. Consider the
following example:

The tooltip message for the division operator / indicates that the:

• Operation is performed on 32-bit integers

• Dividend (left) is a value between –1701 and 3276

• Divisor (right) is an exact value, 9

• Quotient (result) lies between –189 and 364

8-88

Using Polyspace® Results

Diagnosing Errors with Range Information
You can use range information to diagnose errors. Consider the function
reset_temperature() in the following example:

Clicking the red check, OBAI.0 in the Procedural entities view or [on line
60 in the source code view, displays an error message and range information
in the Review Details pane:

8-89

8 Reviewing Verification Results

The error message shows that the array size is 39, but the array index is
negative, lying between –255 and –39.

Placing the cursor over in_v3 in the source code view shows the following:

Although in_v3 is green (as a local variable), it is in the range 0 - 216. This
results in a negative index range. Moving the cursor to the beginning of the
function reveals the cause of the red check: the input argument is between 0
and 216:

8-90

Using Polyspace® Results

Using Pointer Information in Run-Time Checks
Perspective
Within the Source pane, you can see information about pointers to variables
or functions. If you place the cursor over a pointer, dereference character ([,
->, *), function call, or function declaration, a tooltip message displays pointer
information. For example:

If you click the pointer check (IDP, NIP), dereference character, function call,
or function declaration, the software also displays the pointer information
in Review Details.

For a pointer to a variable, on separate lines in the tooltip message, the
software displays:

8-91

8 Reviewing Verification Results

• The pointer name, data type of the variable, and size of the data type in bits.

• A comment that indicates whether the pointer is null, is not null, or
may be null. See also “Messages on Dereferences” on page 8-94.

• The number of bytes that the pointer accesses, the offset position of the
pointer in the allocated buffer, and the size of this buffer in bytes.

• A comment that indicates whether the pointer may point to dynamically
allocated memory.

• The names of the variables at which the pointer may point. See also
“Variables in Structures” on page 8-95.

Note Tooltip messages display only lines that contain meaningful
information. For example, when a pointer is initialized by the main generator,
the tooltip does not display lines for offset and aliases.

For a pointer to a function, the software displays:

• The pointer name.

• A comment that indicates whether the pointer is null, is not null,
or may be null.

• The names of the functions that the pointer may point to, and a comment
indicating whether the functions are well or badly typed (whether the
number or types of arguments in a function call are compatible with the
function definition).

Note Computing pointer information may take a long time. You
can disable the display of pointer information by selecting the
option no-pointer-information. See “No pointer information
(-no-pointer-information)” in the Polyspace Products for C Reference
Guide.

You can use pointer information when analyzing, for example, red and orange
IDP and NIP checks. In the following example, placing the cursor over the

8-92

Using Polyspace® Results

orange check shows that offset position may lie outside the bounds of the
pointer.

8-93

8 Reviewing Verification Results

Messages on Dereferences
Tooltip messages on dereferences give information about the expression that
is dereferenced.

Consider the following code:

int *p = (int*) malloc (sizeof(int) * 20);
p[10] = 0;

In the verification results, the tooltip on “[” displays information about the
expression that is dereferenced.

On p[10], the expression dereferenced is p + 10 * sizeof(int), so the
tooltip message displays the following:

• The dereferenced pointer is at offset 40.

Explanation: p has offset 0, so p+10 has offset 40 (10 * sizeof(int)).

• The dereferenced pointer is not null.

Explanation: p is null, but p+10 is not null (0+40 ≠ 0).

The software reports an orange dereference check (IDP) on p[10] because
malloc may have put NULL into p. In that case, p + 10 * sizeof(int) is not
null, but it is not properly allocated.

8-94

Using Polyspace® Results

Variables in Structures
The information that the software displays for structure variables depends on
whether you specify the option -allow-ptr-arith-on-struct. See “Enable
pointer arithmetic out of bounds of fields (-allow-ptr-arith-on-struct)”
in the Polyspace Products for C Reference Guide.

Consider the following code:

Struct { int x; int y; int z; } s ;
int *p = &s.y ;

If you do not specify the option (this is the default), then placing the cursor
over p produces the following information:

accessing 4 bytes at offset 0 in buffer of 4 bytes

This information conforms with ANSI C, which

• Requires that &s.y points only at the field y

• Does not allow pointer arithmetic for access to other fields, for example, z

If you specify the option -allow-ptr-arith-on-struct, you are allowed to
carry out pointer arithmetic using the addresses of structure fields. In this
case, placing the cursor over p produces the following information:

accessing 4 bytes at offset 4 in buffer of 12 bytes

Why Review Dead Code Checks

• “Functional Bugs in Gray Code” on page 8-95

• “Structural Coverage” on page 8-97

Functional Bugs in Gray Code
Polyspace verification finds different types of dead code. Common examples
include:

• Defensive code which is never reached.

• Dead code due to a particular configuration.

8-95

8 Reviewing Verification Results

• Libraries which are not used to their full extent in a particular context.

• Dead code resulting from bugs in the source code.

The causes of dead code listed in the following examples are taken from
critical applications of embedded software by Polyspace verification.

• A lack of parenthesis and operand priorities in the testing clause can
change the meaning significantly.

• Consider a line of code such as:

IF NOT a AND b OR c AND d

Now consider how misplaced parentheses might influence how that line
behaves:

IF NOT (a AND b OR c AND d)

IF (NOT (a) AND b) OR (c AND d))

IF NOT (a AND (b OR c) AND d)

• The test of variable inside a branch where the conditions are never met

• An unreachable “else” clause where the wrong variable is tested in the
“if” statement

• A variable that should be local to the file but instead is local to the function

• Wrong variable prototyping leading to a comparison which is always false
(say)

As is the case for red errors, the consequences of dead code and how much
time you must spend on it is unpredictable. For example, it can be:

• A one-week effort of functional testing on target, trying to build a scenario
going into that branch.

• A three-minute code review discovering the bug.

Again, as for red errors, Polyspace does not measure the impact of dead code.

The tool provides a list of dead code. A short code review enables you to
identify known dead code and uncover real bugs.

8-96

Using Polyspace® Results

In general, at least 30% of gray code reveals real bugs.

Structural Coverage
Polyspace software always performs upper approximations of all possible
executions. Therefore, if a line of code is shown in green, there is a possibility
that it is a dead portion of code. Because Polyspace verification makes an
upper approximation, it does not conclude that the code is dead, but it could
conclude that no run-time error is found.

Polyspace verification finds around 80% of dead code that the developer finds
by doing structural coverage.

Use Polyspace verification as a productivity aid in dead code detection. It
detects dead code which might take days of effort to find by any other means.

Reviewing Orange Checks
Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

The number of orange checks you review is determined by several factors,
including:

• The stage of the development process

• Your quality objectives

There are also actions you can take to reduce the number of orange checks
in your results.

For information on managing orange checks in your results, see Chapter 9,
“Managing Orange Checks”.

Integration Bug Tracking
By default, you can achieve integration bug tracking by applying the
selective orange methodology to integrated code. Each error category reveals
integration bugs, depending on the coding rules that you choose for the project.

8-97

8 Reviewing Verification Results

For instance, consider a function that receives two unbounded integers. The
presence of an overflow can be checked only at integration phase because at
unit phase the first mathematical operation reveals an orange check.

Consider these two circumstances:

• When you carry out integration bug tracking in isolation, a selective
orange review highlights most integration bugs. A Polyspace verification is
performed integrating tasks.

• When you carry out integration bug tracking together with an exhaustive
orange review at unit phase, a Polyspace verification is performed on one
or more files.

In this second case, an exhaustive orange review already has been performed,
file by file. Therefore, at integration phase, assess only checks that have
turned from green to another color .

For instance, if a function takes a structure as an input parameter, the
standard hypothesis made at unit level is that the structure is well initialized.
This consequentially displays a green NIV check at the first read access to
a field. But this might not be true at integration time, where this check can
turn orange if any context does not initialize these fields.

These orange checks reveal integration bugs.

How to Find Bugs in Unprotected Shared Data
Based on the list of entry points in a multi-task application, Polyspace
verification identifies a list of shared data and provides some information
about each entry:

• The data type.

• A list of read and write access to the data through functions and entry
points.

• The type of any implemented protection against concurrent access.

A shared data item is a global data item that is read from or written to by
two or more tasks. It is unprotected from concurrent access when one task

8-98

Using Polyspace® Results

can access it while another task is in the process of doing so. Consider all
the possible situations:

• A scenario which would lead to such a conflict for a particular variable;
then a bug exists and you must provide protection.

• No such scenarios; then one of the following explanations may apply:

- The compilation environment guarantees an atomic read/write access
on variables of type less than 1 or, 2 bytes. Therefore, all conflicts
concerning a particular variable type still guarantee the integrity of the
variables content. Be careful when you port the code.

- The variable is protected by a critical section or a mutual temporal
exclusion. You may want to include this information in the Polyspace
launching parameters and reverify.

Consider checking whether variables are modified when they are supposed to
be constant. Use the variables dictionary.

Dataflow Verification
Data flow verification is often performed within certification processes —
typically in the avionic, aerospace, or transport markets.

This activity makes use of two features of Polyspace results, which are
available any time after the Control and Data Flow verification phase:

• Call tree computation

• Dictionary containing read/write access to global variables. (You can also
use this to build a database listing for each procedure, for its parameters,
and for its variables.)

Polyspace software can help you to build these results by extracting
information from both the call tree and the dictionary.

Data and Coding Rules
Data rules are design rules which dictate how modules and files interact
with each other.

8-99

8 Reviewing Verification Results

Consider global variables. It is not always apparent which global variables
are produced by a given file, or which global variables are used by that file.
The excessive use of global variables can lead to design problems, such as:

• File APIs (or functions accessible from outside the file) with no procedure
parameters.

• The requirement for a formal list of variables which are produced and used,
as well as the theoretical ranges they can take as input and output values.

Potential Side Effect of a Red Error
When the software finds a red error, you can continue the verification but
proceed with caution. Consider this piece of code:

int *global_ptr;
int variable_it_points_to;

void big_red(void)
{
int r;
int my_zero = 0;
if (condition==1)
r = 1 / my_zero; // red ZDV

...

... // hundreds of lines

global_ptr = &variable_it_points_to;

other_function();

}

void other_function(void)

{

if (condition==1)

*global_ptr = 12;

}

Polyspace verification works by propagating data sets representing ranges
of possible values throughout the call tree, and throughout the functions
in that call tree. Sometimes, Polyspace software internally subdivides the
functions for verification, and the propagation of the data ranges need several

8-100

Using Polyspace® Results

iterations (or integration levels) to be complete. You can observe that effect by
examining the color of the checks upon completion of each of those levels.

• The verification detects gray code which exists due to a terminal RTE
which is not be flagged in red until a subsequent integration level.

• The verification flags an NTC in red with the content in gray. This red
NTC is the result of an imprecision; it should be gray.

Suppose that an NTC is hard to understand at a given integration level
(level 4):

• If other red checks exist at level 4, fix them and restart the verification

• Otherwise, look through the results from each previous level to see whether
you can locate other red errors. If so, fix them and restart the verification

Relationships Between Variables

Abstract
A red error can hide a bug which occurred on previous lines.

%% file1.c %%

1 void f(int);
2 int read_an_input(void);
3
4 int main(void)
5 {
6 int x,old_x;
7
8 x = read_an_input();
9 old_x = x;
10
11 if (x<0 || x>10)
12 return 0;
13
14 f(x);
15

%% file2.c %%

1 #include <math.h>
2
3 void f(int a)
4 {
5 int tmp;
6 tmp = sqrt(0-a);
7 }

8-101

8 Reviewing Verification Results

16 x = 1 / old_x; // division is red
17
18 }

Explanation 1

• When old_x is assigned to x (file 1, line 9), the verification retains the
following information:

- x and old_x are equivalent to the full range of an integer: [-2^31 ;
2^31-1].

- x and old_x are equal.

• After the if clause (file 1, line 11), X is equivalent to [0; 10]. Because x
and old_x are equal, old_x is equivalent to [0;10] as well. Otherwise
the return statement is executed.

• When X is passed to "f" (file 1, line 14), the only possible conclusion for
sqrt is that x=0. All other values lead to a run-time exception (file 2, line
6) tmp = sqrtt(0 a);.

• A red error occurs (file 1, line 16) because x and old_x are equal, therefore
old_x = 0.

Explanation 2

• Suppose that the verification exits immediately when encountering a
run-time error. Introduce a print statement that writes to the standard
output after the "f" procedure is called (file 1, line 14), to show the current
value of x and old_x.

• The only way the program can reach the print statement is when X =
0. So, if X=0, old_x must also have been assigned to 0, which makes the
division red.

Summary
Polyspace verification builds relationships between variables and propagates
the consequence of these relationships backwards and forwards.

8-102

9

Managing Orange Checks

• “Understanding Orange Checks” on page 9-2

• “Too Many Orange Checks?” on page 9-12

• “Reducing Orange Checks in Your Results” on page 9-14

• “Reviewing Orange Checks” on page 9-30

• “Automatically Testing Orange Code” on page 9-45

9 Managing Orange Checks

Understanding Orange Checks

In this section...

“What is an Orange Check?” on page 9-2

“Sources of Orange Checks” on page 9-6

What is an Orange Check?
Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

Polyspace verification does not simply try to find bugs, it attempts to prove
the absence or existence of run time errors. Therefore, all code starts out as
unproven prior to verification. The verification then attempts to prove that
the code is either correct (green), is certain to fail (red), or is unreachable
(gray). Any remaining code stays unproven (orange).

Code often remains unproven in situations where some paths fail while others
succeed. For example, consider the following instruction:

X = 1 / (X - Y);

Does a division-by-zero error occur?

The answer clearly depends on the values of X and Y . However, there are an
almost infinite number of possible values. Creating test cases for all possible
values is not practical.

9-2

Understanding Orange Checks

"���
����
��������	��
����
G�>�:G���H=

:��
������������=

G

H

)

)

)

)

)
)

))
)

)

)

)
))

)

)
)

)

))
)

))
)))

G�9�H�:���������!��6���������=

Although it is not possible to test every value for each variable, the target
computer and programming language provide limits on the possible values of
the variables. Polyspace verification uses these limits to compute a cloud of
points (upper-bounded convex polyhedron) that contains all possible states
for the variables.

�����)�	���������
����
����
�
���	����!��

��
������
G�>�:G���H=

G

H

)

)

)

)

)
)

))
)

)

)

)
))

)

)
)

)

))
)

)
)

)))

9-3

9 Managing Orange Checks

Polyspace verification than compares the data set represented by this
polyhedron to the error zone. If the two data sets intersect, the check is
orange.

*	��
����B��G�>�:G���H=

$��������������
������	
�

G

H

G�9�H�:���������!��6���������=

Graphical Representation of an Orange Check

9-4

Understanding Orange Checks

A true orange check represents a situation where some paths fail while
others succeed. However, because the data set used in the verification is an
approximation of actual values, an orange check may actually represent a
check of any other color, as shown below.

�
�

����
		��)��
����!����
�
� .�
��
		��)��
����!����
�
�

�
�

.�����
		��)��
����!����
�
�

�
�

�

"�������������
�����:�������
�
�=

�

Polyspace verification reports an orange check any time the two data sets
intersect, regardless of the actual values. Therefore, you may find orange
checks that represent bugs, while other orange checks represent code that is
safe.

You can resolve some of these orange checks by increasing the precision of
your verification, or by adding execution context, but often you must review
the results to determine the source of an orange check.

9-5

9 Managing Orange Checks

Sources of Orange Checks
Orange checks can be separated into two categories:

• “Orange Checks Due to Code Issues” on page 9-6

• “Orange Checks Due to Tool Issues” on page 9-9

Orange Checks Due to Code Issues
Most orange checks are caused by issues in the code. These oranges may
represent real bugs, or could indicate theoretical issues that cannot actually
occur in your application.

Orange checks due to code issues can be caused by:

• “Potential Bug” on page 9-6

• “Data Set Issue” on page 9-7

• “Function Sequence” on page 9-8

Potential Bug. An orange check can reveal code which will fail in some
circumstances. These types of orange checks are called true orange, and often
represent real bugs.

For example, consider a function Recursion():

• Recursion() takes a parameter, increments it, then divides by it.

• This sequence of actions loops through an indirect recursive call to
Recursion_recurse().

If the initial value passed to Recursion() is negative, then the recursive
loop will at some point attempt a division by zero. Therefore, the division
operation causes an orange ZDV.

When an orange check indicates a potential bug, you can usually identify
the cause quickly. The range information provided in the Run-Time Checks
perspective can help you identify whether the orange represents a bug
that should be fixed. See “Using Range Information in Run-Time Checks
Perspective” on page 8-86.

9-6

Understanding Orange Checks

If the orange represents a situation that cannot actually occur (for example,
the initial value above cannot be negative), you have several options:

• Comment the orange check and ignore it.

• Modify the code to take constraints into account.

• Constrain the data ranges used in the verification using DRS (contextual
verification).

Data Set Issue. An orange check can result from a theoretical set of data
that cannot actually occur.

Polyspace verification uses an upper approximation of the data set, meaning
that it considers all combinations of input data rather than any particular
combination. Therefore, an orange check may result from a combination of
input values that is not possible at execution time.

For example, consider three variables X, Y, and Z:

• Each of these variables is defined as being between 1 and 1,000.

• The code computes X*Y*Z on a 16-bit data type.

• The result can potentially overflow, so it causes an orange OVFL.

When developing the code, you may know that the three variables cannot all
take the value 1,000 at the same time, but this information is not available to
the verification. Therefore, the multiplication is orange.

When an orange check is caused by a data set issue, it is usually possible to
identify the cause quickly. The range information provided in the Run-Time
Checks perspective can help you identify whether the orange represents a bug
that should be fixed. See “Using Range Information in Run-Time Checks
Perspective” on page 8-86.

After identifying a data set issue, you have several options:

• Comment the orange check and ignore it.

• Modify the code to take data constraints into account.

9-7

9 Managing Orange Checks

• Constrain the data ranges that are verified using DRS (contextual
verification).

Function Sequence. An orange check can occur if the verification cannot
conclude whether a problem exists.

In some code, it is impossible to conclude whether an error exists without
additional information, such as the function sequence.

For example, consider a variable X, and two functions, F1and F2:

• F1 assigns X = 12.

• F2 divides a local variable by X.

• The automatically generated main (F0) initializes X to 0.

• The generated main then randomly calls the functions, similar to the
following:

If (random)
Call F1
Call F2

Else
Call F2
Call F1

A division by zero error is possible because F1 can be called before or after F2,
so the division causes an orange ZDV. The verification cannot determine if an
error will occur unless you define the call sequence.

Many inconclusive orange checks take some time to investigate, due to the
complexity of the code. When an orange check is caused by function sequence,
you have several options:

• Provide manual stubs for some functions.

• Use -main-generator options to describe the function call sequence, or to
specify a function called before the main.

• Write defensive code to prevent potential problems.

• Comment the orange check and ignore it.

9-8

Understanding Orange Checks

Orange Checks Due to Tool Issues
Some orange checks are caused by limitations of the verification process itself.

In these cases, the orange check is a false positive, because the code does not
contain an actual bug. However, these types of oranges may suggest design
issues with the code.

Orange checks due to tool issues can be caused by:

• “Code Complexity” on page 9-9

• “Basic Imprecision” on page 9-10

Code Complexity. An orange check can occur when the code structure is too
complicated to be verified by Polyspace software.

When code is extremely complex, the verification cannot conclude whether
a problem exists, and therefore reports an inconclusive orange check in the
results.

For example, consider a variable Computed_Speed.

• Computed_Speed is first copied into a signed integer (between -2^31 and
2^31-1).

• Computed_Speed is then copied into an unsigned integer (between 0 and
2^31-1).

• Computed_Speed is next copied into a signed integer again.

• Finally, Computed_Speed is added to another variable.

Polyspace verification reports an orange OVFL on the addition.

This type of orange check is a false positive, because the scenario does not
cause a real bug. However, it does suggest that the code may be poorly
designed.

Orange checks caused by code complexity often take some time to investigate,
but generally share certain characteristics. Code complexity problems usually
result in multiple orange checks in the same module. These checks are often

9-9

9 Managing Orange Checks

related, and analysis identifies a single cause — perhaps a function or a
variable modified many times.

In these cases, you may want to recode to ensure there is no risk, depending
on the criticality of the function and the required speed of execution.

To limit the number of orange checks caused by code complexity, you can:

• Enforce coding rules during development

• Perform unit-by-unit verification to verify smaller sections of code.

Note MathWorks recommends enforcing compliance with coding standards
to reduce code complexity. For more information, see Chapter 11, “MISRA C
Coding Rules Checker”.

Basic Imprecision. An orange check can be caused by imprecise
approximation of the data set used for verification.

Static verification uses approximations of software operations and data.
For certain code constructions, these approximations can lead to a loss of
precision, and therefore cause orange checks in the verification results.

For example, consider a variable X:

• Before the function call, X is defined as having the following values:
-5, -3, 8, or any value in range [10...20].
This means that 0 has been excluded from the set of possible values for X.

• However, due to optimization (especially at low precision levels), the
verification approximates X in the range [-5...20], instead of the previous
set of values.

• Therefore, calling the function x = 1/x causes an orange ZDV.

Polyspace verification is unable to prove the absence of a run-time error in
this case.

9-10

Understanding Orange Checks

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
however, verification cannot help directly. You need to review the code to
determine if there is an actual problem.

To limit the number of orange checks caused by basic imprecision, avoid code
constructions that cause imprecision.

For more information, see “Approximations Used During Verification”in the
Polyspace Products for C Reference.

9-11

9 Managing Orange Checks

Too Many Orange Checks?

In this section...

“Do I Have Too Many Orange Checks?” on page 9-12

“How to Manage Orange Checks” on page 9-13

Do I Have Too Many Orange Checks?
If the goal of code verification is to prove the absence of run time errors, you
may be concerned by the number of orange checks (unproven code) in your
results.

In reality, asking “Do I have too many orange checks?” is not the right
question. There is not an ideal number of orange checks that applies for
all applications, not even zero. Whether you have too many orange checks
depends on:

• Development Stage – Early in the development cycle, when verifying the
first version of a software component, you may want to focus exclusively
on finding red errors, and not consider orange checks. As development of
the same component progresses, however, you may want to focus more
on orange checks.

• Application Requirements – There are actions you can take during
coding to produce more provable code. However, writing provable code
often involves compromises with code size, code speed, and portability.
Depending on the requirements of your application, you may decide to
optimize code size, for example, at the expense of more orange checks.

• Quality Goals – Polyspace software can help you meet quality goals, but it
cannot define those goals for you. Before you verify code, you must define
quality goals for your application. These goals should be based on the
criticality of the application, as well as time and cost constraints.

It is these factors that ultimately determine how many orange checks are
acceptable in your results, and what you should do with the orange checks
that remain.

Thus, a more appropriate question is “How do I manage orange checks?”

9-12

Too Many Orange Checks?

This question leads to two main activities:

• Reducing the number of orange checks

• Working with orange checks

How to Manage Orange Checks
Polyspace verification cannot magically produce quality code at the end of the
development process. Verification is a tool that helps you measure the quality
of your code, identify issues, and ultimately achieve the quality goals you
define. To do this, however, you must integrate Polyspace verification into
your development process.

Similarly, you cannot successfully manage orange checks simply by using
Polyspace options. To manage orange checks effectively, you must take
actions while coding, when setting up your verification project, and while
reviewing verification results.

To successfully manage orange checks, perform each of the following steps:

1 Define your quality objectives to set overall goals for application quality.
See “Defining Quality Objectives” on page 2-5.

2 Set Polyspace analysis options to match your quality objectives. See
“Specifying Options to Match Your Quality Objectives” on page 3-23.

3 Define a process to reduce orange checks. See “Reducing Orange Checks in
Your Results” on page 9-14.

4 Apply the process to work with remaining orange checks. See “Reviewing
Orange Checks” on page 9-30.

9-13

9 Managing Orange Checks

Reducing Orange Checks in Your Results

In this section...

“Overview: Reducing Orange Checks” on page 9-14

“Applying Coding Rules to Reduce Orange Checks” on page 9-15

“Considering Generated Code” on page 9-20

“Improving Verification Precision” on page 9-21

“Stubbing Parts of the Code Manually” on page 9-26

“Describing Multitasking Behavior Properly” on page 9-28

“Considering Contextual Verification” on page 9-29

Overview: Reducing Orange Checks
There are several actions you can take to reduce the number of orange checks
in your results.

However, it is important to understand that while some actions increase
the quality of your code, others simply change the number of orange checks
reported by the verification, without improving code quality.

Actions that reduce orange checks and improve the quality of your code:

• Apply coding rules – Coding rules are the most efficient means to reduce
oranges, and can also improve the quality of your code.

• Move to generated code – Generated code can reduce orange checks and
eliminate certain types of coding errors.

Actions that reduce orange checks through increased verification precision:

• Set precision options – There are several Polyspace options that
can increase the precision of your verification, at the cost of increased
verification time.

• Implement manual stubbing – Manual stubs that accurately model the
behavior of missing functions can increase the precision of the verification.

9-14

Reducing Orange Checks in Your Results

• Specify multitasking behavior – Accurately defining call sequences and
other multitasking behavior can increase the precision of the verification.

Options that reduce orange checks but do not improve code quality or the
precision of the verification:

• Constrain data ranges – You can use data range specifications (DRS)
to limit the scope of a verification to specific variable ranges, instead of
considering all possible values. This reduces the number of orange checks,
but does not improve the quality of the code. Therefore, DRS should be
used specifically to perform contextual verification, not simply to reduce
orange checks.

Each of these actions have trade-offs, either in development time, verification
time, or the risk of errors. Therefore, before taking any of these actions, it is
important to define your quality objectives, as described in Chapter 2.

It is your quality objectives that determine how many orange checks are
acceptable in your results, what actions you should take to reduce the number
of orange checks, and what you should do with any orange checks that remain.

Applying Coding Rules to Reduce Orange Checks
The number of orange checks in your results depends strongly on the coding
style used in the project. Applying coding rules can both reduce the number of
orange checks in your verification results, and improve the quality of your
code. Coding rules are the most efficient way to reduce orange checks.

Polyspace software allows you to check MISRA C coding rules during
verification. If your code complies with the first subset of MISRA rules (coding
rules with a direct impact on selectivity), the total number of orange checks
will decrease substantially, and the percentage of orange checks representing
real bugs will increase.

In addition, some code constructions are known to produce orange checks. If
your design avoids these constructions, you will see fewer orange checks in
your verification results. The second subset of MISRA rules (coding rules with
an indirect impact on selectivity), checks for these constructions.

The following coding rules are recommended to reduce oranges:

9-15

9 Managing Orange Checks

• “Coding Rules with a Direct Impact on Selectivity (SQO-subset1)” on page
9-16

• “Coding Rules with an Indirect Impact on Selectivity (SQO-subset2)” on
page 9-18

For more information on checking MISRA C coding rules, see Chapter 11,
“MISRA C Coding Rules Checker”.

Coding Rules with a Direct Impact on Selectivity (SQO-subset1)
The following set of coding rules will typically improve the selectivity of your
verification results.

Rule I Description

MISRA 8.11 The static storage class specifier shall be used in definitions
and declarations of objects and functions that have internal
linkage

MISRA 8.12 When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization

MISRA 11.2 Conversion shall not be performed between a pointer to an
object and any type other than an integral type, another
pointer to a object type or a pointer to void

MISRA 11.3 A cast should not be performed between a pointer type and
an integral type

MISRA 12.12 The underlying bit representations of floating-point values
shall not be used

MISRA 13.3 Floating-point expressions shall not be tested for equality
or inequality

MISRA 13.4 The controlling expression of a for statement shall not
contain any objects of floating type

9-16

Reducing Orange Checks in Your Results

Rule I Description

MISRA 13.5 The three expressions of a for statement shall be concerned
only with loop control

MISRA 14.4 The goto statement shall not be used.

MISRA 14.7 A function shall have a single point of exit at the end of
the function

MISRA 16.1 Functions shall not be defined with variable numbers of
arguments

MISRA 16.2 Functions shall not call themselves, either directly or
indirectly

MISRA 16.7 A pointer parameter in a function prototype should be
declared as pointer to const if the pointer is not used to
modify the addressed object

MISRA 17.3 >, >=, <, <= shall not be applied to pointer types except
where they point to the same array

MISRA 17.4 Array indexing shall be the only allowed form of pointer
arithmetic

MISRA 17.5 The declaration of objects should contain no more than 2
levels of pointer indirection

MISRA 17.6 The address of an object with automatic storage shall not
be assigned to an object that may persist after the object
has ceased to exist.

MISRA 18.3 An area of memory shall not be reused for unrelated
purposes.

MISRA 18.4 Unions shall not be used

MISRA 20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

9-17

9 Managing Orange Checks

Coding Rules with an Indirect Impact on Selectivity
(SQO-subset2)
Good design practices generally lead to less code complexity, which can
improve the selectivity of your verification results. The following set of coding
rules help address design issues that can impact selectivity.

Rule # Description

MISRA 6.3 typedefs that indicate size and signedness should be used
in place of the basic types

MISRA 8.7 Objects shall be defined at block scope if they are only
accessed from within a single function

MISRA 9.2 Braces shall be used to indicate and match the structure in
the nonzero initialization of arrays and structures

MISRA 9.3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized

MISRA 10.3 The value of a complex expression of integer type may
only be cast to a type that is narrower and of the same
signedness as the underlying type of the expression

MISRA 10.5 Bitwise operations shall not be performed on signed integer
types

MISRA 11.1 Conversion shall not be performed between a pointer to a
function and any type other than an integral type

MISRA 11.5 Type casting from any type to or from pointers shall not
be used

MISRA 12.1 Limited dependence should be placed on C’s operator
precedence rules in expressions

MISRA 12.2 The value of an expression shall be the same under any
order of evaluation that the standard permits

MISRA 12.5 The operands of a logical && or || shall be
primary-expressions

9-18

Reducing Orange Checks in Your Results

Rule # Description

MISRA 12.6 Operands of logical operators (&&, || and !) should be
effectively Boolean. Expression that are effectively Boolean
should not be used as operands to operators other than
(&&, || or !)

MISRA 12.9 The unary minus operator shall not be applied to an
expression whose underlying type is unsigned

MISRA 12.10 The comma operator shall not be used

MISRA 13.1 Assignment operators shall not be used in expressions that
yield Boolean values

MISRA 13.2 Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean

MISRA 13.6 Numeric variables being used within a “for” loop for
iteration counting should not be modified in the body of
the loop

MISRA 14.8 The statement forming the body of a switch, while, do while
or for statement shall be a compound statement

MISRA 14.10 All if else if constructs should contain a final else clause

MISRA 15.3 The final clause of a switch statement shall be the default
clause

MISRA 16.3 Identifiers shall be given for all of the parameters in a
function prototype declaration

MISRA 16.8 All exit paths from a function with non-void return type
shall have an explicit return statement with an expression

MISRA 16.9 A function identifier shall only be used with either a
preceding &, or with a parenthesized parameter list, which
may be empty

MISRA 19.4 C macros shall only expand to a braced initializer, a
constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct

MISRA 19.9 Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives

9-19

9 Managing Orange Checks

Rule # Description

MISRA 19.10 In the definition of a function-like macro each instance of
a parameter shall be enclosed in parentheses unless it is
used as the operand of # or ##

MISRA 19.11 All macro identifiers in preprocessor directives shall be
defined before use, except in #ifdef and #ifndef preprocessor
directives and the defined() operator

MISRA 19.12 There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

MISRA 20.3 The validity of values passed to library functions shall be
checked.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the
validity of values. For example, the following code checks the validity of an
input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

Considering Generated Code
Moving to generated code can reduce the number of orange checks in your
results, and improve the overall quality of your software.

Generated code has a well-defined set of coding rules, and eliminates certain
types of coding errors by construction. This results in higher ratio of green
checks in your verification results.

The Polyspace Model Link SL, Polyspace Model Link TL, and Polyspace
UML Link™ RH products allow you to integrate Polyspace verification into
a generated code workflow.

For more information, see the Polyspace Model Link Products User’s Guide.

9-20

Reducing Orange Checks in Your Results

Improving Verification Precision
Improving the precision of a verification can reduce the number of orange
checks in your results, although it does not affect the quality of the code itself.

There are a number of Polyspace options that affect the precision of the
verification. The trade off for this improved precision is increased verification
time.

The following sections describe how to improve the precision of your
verification:

• “Balancing Precision and Verification Time” on page 9-21

• “Setting the Analysis Precision Level” on page 9-22

• “Setting Software Safety Analysis Level” on page 9-23

• “Other Options that Can Improve Precision” on page 9-24

Balancing Precision and Verification Time
When performing code verification, you must find the right balance between
precision and verification time. Consider the two following extremes:

• If a verification runs in one minute but contains only orange checks, the
verification is not useful because each check must be reviewed manually.

• If a verification contains no orange checks (only gray, red, and green), but
takes six months to run, the verification is not useful because of the time
spent waiting for the results.

Higher precision yields more proven code (red, green, and gray), but takes
longer to complete. The goal is therefore to get the most precise results in
the time available. Factors that influence this compromise include the time
available for verification, the time available to review results, and the stage
in the development cycle.

For example, consider the following scenarios:

• Unit testing – Before going to lunch, a developer starts verification. After
returning from lunch the developer reviews verification results for one hour.

9-21

9 Managing Orange Checks

• Integration testing – Verification runs automatically on nightly builds of
modules or software components.

These scenarios require a developer to use Polyspace software in different
ways. Generally, the first verification should use the lowest precision mode,
while subsequent verifications increase the precision level.

Setting the Analysis Precision Level
The analysis Precision Level specifies the mathematical algorithm used
to compute the cloud of points (polyhedron) containing all possible states
for the variables.

Although changing the precision level does not affect the quality of your code,
orange checks caused by low precision become green when verified with
higher precision.

Affect of Precision Rate on Orange Checks

9-22

Reducing Orange Checks in Your Results

To set the precision level:

1 In the Analysis options section of the Project Manager perspective, select
Precision/Scaling > Precision.

2 Select the -O0, -O1, -O2 or -O3 precision level the Precision Level
drop-down list.

For more information, see “Precision Level (-O)”in the Polyspace Products
for C Reference.

Setting Software Safety Analysis Level
The Software Safety Analysis level of your verification specifies how many
times the abstract interpretation algorithm passes through your code. The
deeper the verification goes, the more precise it is.

There are 5 Software Safety Analysis levels (pass0 to pass4). By default,
verification proceeds to pass4, although it can go further if required. Each
iteration results in a deeper level of propagation of calling and called context.

To set the Software Safety Analysis level:

1 In the Analysis options section of the Project Manager perspective, select
Precision/Scaling > Precision.

2 Select the appropriate level in the To end of drop-down list.

For more information, see “To end of (-to)”in the Polyspace Products for C
Reference.

Example: Orange Checks and Software Safety Analysis Level

The following example shows how orange checks are resolved as verification
proceeds through Software Safety Analysis levels 0 and 1.

9-23

9 Managing Orange Checks

Safety Analysis Level 0 Safety Analysis Level 1

#include <stdlib.h>

void ratio (float x, float *y)
{
*y=(abs(x-*y))/(x+*y);

}

void level1 (float x,
float y, float *t)

{ float v;
v = y;
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);

}

float level2(float v)
{
float t;
t = v;
level1(0.0, 1.0, &t);
return t;

}

void main(void)
{
float r,d;
d= level2(1.0);
r = 1.0 / (2.0 - d);

}

#include <stdlib.h>

void ratio (float x, float *y)
{
*y=(abs(x-*y))/(x+*y);

}

void level1 (float x,
float y, float *t)

{ float v;
v = y;
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);

}

float level2(float v)
{
float t;
t = v;
level1(0.0, 1.0, &t);
return t;

}

void main(void)
{
float r,d;
d= level2(1.0);
r = 1.0 / (2.0 - d);

}

In this example, division by an input parameter of a function produces an
orange during Level 0 verification, but turns to green during level 1. The
verification gains more accurate knowledge of x as the value is propagated
deeper.

Other Options that Can Improve Precision
The following options can also improve verification precision:

9-24

Reducing Orange Checks in Your Results

• “Improve precision of interprocedural analysis” on page 9-25

• “Sensitivity context” on page 9-25

• “Inline” on page 9-25

Note Changing these options does not affect the quality of the code itself.
Improved precision can reduce the number of orange checks, but will increase
verification time.

Improve precision of interprocedural analysis. This option causes the
verification to propagate information within procedures earlier than usual.
This improves the precision within each Software Safety Analysis level,
meaning that some orange checks are resolved in level 1 instead of later levels.

However, using this option increases verification time exponentially. In some
cases this could cause a level 1 verification to take longer than a level 4
verification.

For more information, see “Improve precision of interprocedural analysis
(-path-sensitivity-delta)”in the Polyspace Products for C Reference.

Sensitivity context. This option splits each check within a procedure into
sub-checks, depending on the context of a call. This improves precision for
discrete calls to the procedure. For example, if a check is red for one call to
the procedure and green for another, both colors will be revealed.

For more information, see “Sensitivity context (-context-sensitivity)”in
the Polyspace Products for C Reference.

Inline. This option creates clones of a each specified procedure for each call
to it. This reduces the number of aliases in a procedure, and can improve
precision in some situations.

However, using this option can duplicate large amounts of code, leading to
increased verification time and other scaling problems.

For more information, see “Inline (-inline)”in the Polyspace Products for
C Reference.

9-25

9 Managing Orange Checks

Stubbing Parts of the Code Manually
Manually stubbing parts of your code can reduce the number of orange checks
in your results. However, manual stubbing generally does not improve the
quality of your code, it only changes the results.

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing
will stub it on the assumption that it can potentially take any value from the
full type of an integer.

The following sections describe how to reduce orange checks using manual
stubbing:

• “Manual vs. Automatic Stubbing” on page 9-26

• “Emulating Function Behavior with Manual Stubs” on page 9-27

Manual vs. Automatic Stubbing
There are two types of stubs in Polyspace verification:

• Automatic stubs – The software automatically creates stubs for unknown
functions based on the function’s prototype (the function declaration).
Automatic stubs do not provide insight into the behavior of the function,
but are very conservative, ensuring that the function does not cause any
runtime errors.

• Manual stubs – You create these stub functions to model the behavior
of the missing functions, and manually include them in the verification
with the rest of the source code. Manual stubs can better model missing
functions, or they can be empty.

By default, Polyspace software automatically stubs functions. However,
because automatic stubs are conservative, they can lead to more orange
checks in your results.

9-26

Reducing Orange Checks in Your Results

Stubbing Example

The following example shows the effect of automatic stubbing.

void main(void)
{
a=1;
b=0;
a_missing_function(&a, b);
b = 1 / a;

}

Due to automatic stubbing, the verification assumes that a can be any integer,
including 0. This produces an orange check on the division.

If you provide an empty manual stub for the function, the division would be
green. This reduces the number of orange checks in the result, but does not
improve the quality of the code itself. The function could still potentially
cause an error.

However, if you provide a detailed manual stub that accurately models the
behavior of the function, the division could be any color, including red.

Emulating Function Behavior with Manual Stubs
You can improve both the speed and selectivity of your verification by
providing manual stubs that accurately model the behavior of missing
functions. The trade-off is time spent writing the stubs.

Manual stubs do not need to model the details of the functions or procedures
involved. They only need to represent the effect that the code might have on
the remainder of the system.

Example

This example shows a header for a missing function (which may occur when
the verified code is an incomplete subset of a project).

int a,b;
int *ptr;
void a_missing_function(int *dest, int src);

9-27

9 Managing Orange Checks

/* should copy src into dest */
void main(void)
{
a = 1;
b = 0;
a_missing_function(&a, b);
b = 1 / a;

}

The missing function copies the value of the src parameter to dest, so there
is a division by zero error.

However, automatic stubbing always shows an orange check, because a is
assumed to have any value in the full integer range. Only an accurate manual
stub can reveal the true red error.

Using manual stubs to accurately model constraints in primitives and outside
functions propagates more precision throughout the application, resulting in
fewer orange checks.

Describing Multitasking Behavior Properly
The asynchronous characteristics of your application can have a direct impact
on the number of orange checks. Properly describing characteristics such as
implicit task declarations, mutual exclusion, and critical sections can reduce
the number of orange checks in your results.

For example, consider a variable X, and two concurrent tasks T1 and T2.

• X is initialized to 0.

• T1 assigns the value 12 to X.

• T2 divides a local variable by X.

• A division by zero error is possible because T1 can be started before or after
T2, so the division causes an orange ZDV.

The verification cannot determine if an error will occur without knowing the
call sequence. Modelling the task differently could turn this orange check
green or red.

9-28

Reducing Orange Checks in Your Results

Refer to “Preparing Multitasking Code” on page 5-19 for information on
tasking facilities, including:

• Shared variable protection:

- Critical sections,

- Mutual exclusion,

- Tasks synchronization,

• Tasking:

- Threads, interruptions,

- Synchronous/asynchronous events,

- Real-time OS.

Considering Contextual Verification
By default, Polyspace software performs robustness verification, proving that
the software works under all conditions. Robustness verification assumes that
all data inputs are set to their full range. Therefore, nearly any operation on
these inputs could produce an overflow.

Polyspace software also allows you to perform contextual verification, proving
that the software works under normal working conditions. When performing
contextual verification, you use the data range specifications (DRS) module to
set external constraints on global variables and stub function return values,
and the code is verified within these ranges.

Contextual verification can substantially reduce the number of orange checks
in your verification results, but it does not improve the quality of your code.

Note DRS should be used specifically to perform contextual verification, it is
not simply a means to reduce oranges.

For more information, see “Specifying Data Ranges for Variables and
Functions (Contextual Verification)” on page 4-34.

9-29

9 Managing Orange Checks

Reviewing Orange Checks

In this section...

“Overview: Reviewing Orange Checks” on page 9-30

“Defining Your Review Methodology” on page 9-30

“Performing Selective Orange Review” on page 9-32

“Importing Review Comments from Previous Verifications” on page 9-36

“Commenting Code to Provide Information During Review” on page 9-37

“Working with Orange Checks Caused by Input Data” on page 9-38

“Performing an Exhaustive Orange Review” on page 9-41

Overview: Reviewing Orange Checks
After you define a process that matches your quality objectives, you do not
have too many orange checks. You have the correct number of orange checks
for your quality model.

At this point, the goal is not to eliminate orange checks, it is to work
efficiently with them.

Working efficiently with orange checks involves:

• Defining a review methodology to work consistently with orange checks

• Reviewing orange checks efficiently

• Importing comments to avoid duplicating review effort

• Dynamically testing orange checks

Defining Your Review Methodology
Before reviewing verification results, you should configure a methodology for
your project. The methodology defines both the type and number of orange
checks you need to review to meet three criteria levels.

9-30

Reviewing Orange Checks

Sample Review Methodology

The criteria levels displayed in the methodology represent quality levels you
defined as part of the quality objectives for your project.

Note For information on setting the quality levels for your project, see
“Defining Software Quality Levels” on page 2-8.

After you configure a methodology, each developer uses it to review
verification results. This ensures that all users apply the same standards
when reviewing orange checks in each stage of the development cycle.

For more information on defining a methodology, see “Selecting the
Methodology and Criterion Level” on page 8-38.

9-31

9 Managing Orange Checks

Performing Selective Orange Review
Once you have defined a methodology for your project, you can use assistant
mode to perform a selective orange review.

The number and type of orange checks you review is determined by your
methodology and the quality level you are trying to achieve. As a project
progresses, the quality level (and number of orange checks to review)
generally increases.

For example, you may perform a level 1 review in the early stages of
development, when trying to improve the quality of freshly written code.
Later, you may perform a level 2 review as part of unit testing.

In general, the goal of a selective orange review is to find the maximum
number of bugs in a short period of time. Many orange checks take only a
few seconds to understand. Therefore, to maximize the number of bugs you
can identify, you should focus on those checks you can understand quickly,
spending no more than 5 minutes on each check. Checks that take longer to
understand are left for later analysis.

To perform a selective orange review:

1 Move the Assistant slider to 1 in the Run-Time Checks perspective toolbar.

The toolbar displays controls specific to assistant mode.

2 Select the methodology for your project from the methodology menu.

3 Select the appropriate quality level for your review using the level slider.

9-32

Reviewing Orange Checks

4 In the assistant mode toolbar, click the forward arrow to select the
first check to review.

The Assistant Checks tab shows the current check, and the Source pane
displays the source code for this check.

9-33

9 Managing Orange Checks

5 Perform a quick code review on each orange check, spending no more than
5 minutes on each.

Your goal is to quickly identify whether the orange check is a:

• potential bug – code which will fail under some circumstances.

• inconclusive check – a check that requires additional information to
resolve, such as the call sequence.

• data set issue – a theoretical set of data that cannot actually occur.

See “Sources of Orange Checks” on page 9-6 for more information on each
of these causes.

Note If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand.

6 If you cannot identify a cause within 5 minutes, move on to the next check.

Note Your goal is to find the maximum number of bugs in a short period of
time. Therefore, you want to identify the source of as many orange checks
as possible, while leaving more complex situations for future analysis.

7 Once you understand the cause of an orange check, enter information in
the Review Details pane to document the results of your review.

9-34

Reviewing Orange Checks

8 Select a Classification to describe the seriousness of the issue:

• High

• Medium

• Low

• Not a defect

9 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

• No Action Planned

• Other

• Restart with different options

• Undecided

9-35

9 Managing Orange Checks

Note You can also define your own statuses, which then appear in the
user-defined acronym menu. For more information see “Defining Custom
Status ” on page 8-61.

10 Select the Justified check box to indicate that you have reviewed the check.

11 Enter a comment for the reviewed check in the text box, indicating the
results of your review.

12 Click the forward arrow to navigate to the next check, and repeat
steps 5 to 11.

13 Continue to click the forward arrow until you have reviewed all of the
checks identified by the assistant.

14 Select File > Save to save your review comments.

Importing Review Comments from Previous
Verifications
Once you have reviewed verification results for a module and saved your
comments, you can import those comments into subsequent verifications of
the same module, allowing you to avoid reviewing the same check twice.

To import review comments from a previous verification:

1 Open your most recent verification results in the Run-Time Checks
perspective.

2 Select Review > Import > Import Comments.

3 Navigate to the folder containing your previous results.

4 Select the results (.RTE) file, then click Open.

The review comments from the previous results are imported into the
current results, and the Import checks and comments report opens.

9-36

Reviewing Orange Checks

Once you import checks and comments, the go to next check icon in
assistant mode will skip any reviewed checks, allowing you to review only
checks that you have not reviewed previously. If you want to view reviewed

checks, click the go to next reviewed check icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.
To see the changes that affect your review comments, open the Import/Export
Report.

For more information, see “Importing and Exporting Review Comments”
on page 8-67.

Commenting Code to Provide Information During
Review
You can place comments in your code to provide information on known issues.
When reviewing results, you can use these comments to:

• Highlight and quickly understand issues identified in previous verifications

• Identify and skip previously reviewed checks.

This allows you to avoid reviewing the same check twice, and focus your
review on new issues.

You must annotate your code before running a verification:

In the Run-Time Checks pane, the Comment, Classification, and Status
columns display your code comments. In addition, in the Justified column
, the check box is selected.

9-37

9 Managing Orange Checks

For more information, see “Highlighting Known Coding Rule Violations and
Run-Time Errors” on page 5-34.

Working with Orange Checks Caused by Input Data
Polyspace verification identifies orange checks caused by input data. These
types of orange checks usually do not reveal bugs, so you may want to hide
them before reviewing your results.

Note Orange checks impacted by inputs could contain a bug, but the
probability of them revealing bugs is low.

Verification identifies orange checks caused by:

• Stubs

• Main-generator calls

• Volatile variables

• Extern variables

• Absolute address

9-38

Reviewing Orange Checks

Filtering Orange Checks Caused by Inputs
The Run-Time Checks perspective allows you to hide orange checks impacted
by inputs. These types of orange checks usually do not reveal bugs, so hiding
them can increase the efficiency of your review.

To hide orange checks impacted by inputs:

1 In the Run-Time Checks perspective, switch to Expert mode.

2 In the Run-Time Checks pane toolbar, click the Color filter icon .

3 Clear the Orange checks possibly impacted by inputs option.

The software hides orange checks impacted by inputs.

Additional Information on Orange Checks Caused by Inputs
When the verification identifies orange checks impacted by inputs, it provides
additional information about the cause of the orange check. This information
can help you review results more efficiently.

To see information on the source of the orange, click the check in the Source
code view.

Additional information appears in the Check Details tab.

9-39

9 Managing Orange Checks

Note If the source of an orange is restricted by DRS, it does not appear as a
possible source of imprecision.

The Polyspace code verification log file also lists possible sources of
imprecision for orange checks.

To see information on possible sources of imprecision, select the Additional

information about code verification icon to open the code verification
log.

9-40

Reviewing Orange Checks

Performing an Exhaustive Orange Review
Up to 80% of orange checks can be resolved using multiple iterations of the
process described in “Performing Selective Orange Review” on page 9-32.
However, for extremely critical applications, you may want to resolve all
orange checks. Exhaustive orange review is the process for resolving the
remaining orange checks.

An exhaustive orange review is generally conducted later in the development
process, during the unit testing or integration testing phase. The purpose of
an exhaustive orange review is to analyze any orange checks that were not
resolved during previous selective orange reviews, to identify potential bugs
in those orange checks.

You must balance the time and cost of performing an exhaustive orange
review against the potential cost of leaving a bug in the code. Depending on

9-41

9 Managing Orange Checks

your quality objectives, you may or may not want to perform an exhaustive
orange review.

Cost of Exhaustive Orange Review
During an exhaustive orange review, each orange check takes an average of
5 minutes to review. This means that 400 orange checks require about four
days of code review, and 3,000 orange checks require about 25 days.

However, if you have already completed several iterations of selective orange
review, the remaining orange checks are likely to be more complex than
average, increasing the average time required to resolve them.

Exhaustive Orange Review Methodology
Performing an exhaustive orange review involves reviewing each orange
check individually. As with selective orange review, your goal is to identify
whether the orange check is a:

• potential bug – code which will fail under some circumstances.

• inconclusive check – a check that requires additional information to
resolve, such as the call sequence.

• data set issue – a theoretical set of data that cannot actually occur.

• Basic imprecision – checks caused by imprecise approximation of the
data set used for verification.

Note See “Sources of Orange Checks” on page 9-6 for more information on
each of these causes.

Although you must review each check individually, there are some general
guidelines to follow.

1 Start your review with the modules that have the highest selectivity in
your application.

If the verification finds only one or two orange checks in a module or
function, these checks are probably not caused by either inconclusive

9-42

Reviewing Orange Checks

verification or basic imprecision. Therefore, it is more likely that these
orange checks contain actual bugs. In general, these types of orange checks
can also be resolved more quickly.

2 Next, examine files that contain a large percentage of orange checks
compared to the rest of the application. These files may highlight design
issues.

Often, when you examine modules containing the most orange checks,
those checks will prove inconclusive. If the verification is unable to draw
a conclusion, it often means the code is very complex, which can mean
low robustness and quality. See “Inconclusive Verification and Code
Complexity” on page 9-43.

3 For all files you review, spend the first 10 minutes identifying checks that
you can quickly categorize (such as potential bugs and data set issues),
similar to what you do in a selective orange review.

Even after performing a selective orange review, a significant number of
checks can be resolved quickly. These checks are more likely than average
to reflect actual bugs.

4 Spend the next 40 minutes of each hour tracking more complex bugs.

If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand. See
“Resolving Orange Checks Caused by Basic Imprecision” on page 9-44.

5 Depending on the results of your review, correct the code or comment it to
identify the source of the orange check.

Inconclusive Verification and Code Complexity
The most interesting type of inconclusive check occurs when verification
reveals that the code is too complicated. In these cases, most orange checks in
a file are related, and careful analysis identifies a single cause — perhaps a
function or a variable modified many times. These situations often focus on
functions or variables that have caused problems earlier in the development
cycle.

9-43

9 Managing Orange Checks

For example, consider a variable Computed_Speed.

• Computed_Speed is first copied into a signed integer (between -2^31 and
2^31-1).

• Computed_Speed is then copied into an unsigned integer (between 0 and
2^31-1).

• Computed_Speed is next copied into a signed integer again.

• Finally, Computed_Speed is added to another variable.

The verification reports 20 orange overflows (OVFL).

This scenario does not cause a real bug, but the development team may know
that this variable caused trouble during development and earlier testing
phases. Polyspace verification also identified a problem, suggesting that the
code is poorly designed.

Resolving Orange Checks Caused by Basic Imprecision
On rare occasions, a module may contain many orange checks caused by
imprecise approximation of the data set used for verification. These checks are
usually local to functions, so their impact on the project as a whole is limited.

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
however, verification cannot help directly.

In these cases, Polyspace software can only assist you through the call tree
and dictionary. The code needs to be reviewed using alternate means. These
alternate means may include:

• Additional unit tests

• Code review with the developer

• Checking an interpolation algorithm in a function

• Checking calibration data

For more information on basic imprecision, see “Sources of Orange Checks”
on page 9-6.

9-44

Automatically Testing Orange Code

Automatically Testing Orange Code

In this section...

“Automatic Orange Tester Overview” on page 9-45

“Before Using the Automatic Orange Tester” on page 9-48

“Launching the Automatic Orange Tester” on page 9-50

“Reviewing the Test Results” on page 9-53

“Refining Data Ranges” on page 9-57

“Saving and Reusing Your Configuration” on page 9-61

“Exporting Data Ranges for Polyspace Verification” on page 9-61

“Configuring Compiler Options” on page 9-62

“Technical Limitations” on page 9-63

Automatic Orange Tester Overview
The Polyspace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you identify the cause of these errors.

The Automatic Orange Tester complements results review in the Run-Time
Checks perspective. Manually performing an exhaustive orange review can be
time consuming. The Automatic Orange Tester saves time by automatically
creating test cases for all input variables in orange code, and then dynamically
testing the code to find actual runtime errors.

The Automatic Orange Tester also provides detailed information on why each
test-case failed, including the actual values that caused the error. You can
use this information to quickly identify the cause of the error, and determine
if there is an actual bug in the code.

Note To run the Automatic Orange Tester on Linux or Unix systems, you
must have a 32-bit C compiler.

9-45

9 Managing Orange Checks

Polyspace® Automatic Orange Tester

9-46

Automatically Testing Orange Code

Note The version of the product used to verify the source code must be the
same as the one used for analysis in the Automatic Orange Tester. If you
open verification results created with an older version of the product in the
Automatic Orange Tester, you may get a compilation error.

To avoid this problem, re-launch the code verification with the current version
of the product.

9-47

9 Managing Orange Checks

How the Automatic Orange Tester Works
Polyspace verification mathematically analyzes the operations in the code
to derive its dynamic properties without actually executing it (see “What is
Static Verification” on page 1-5). While this verification can identify almost all
runtime errors, some operations cannot be proved either true or false because
the input values are unknown. These are reported as Orange checks in the
Run-Time Checks perspective (see “What is an Orange Check?” on page 9-2).

The Automatic Orange Tester takes the Polyspace verification results, and
generates instrumented code around orange checks so the code can be run. It
then generates test cases based on the input variables, and dynamically tests
the code for runtime errors.

This dynamic testing approach allows the Automatic Orange Tester to
separate actual runtime errors from theoretical problems. You can then focus
on these errors to determine if an orange check is identifying an actual bug.

Limitations of Dynamic Testing
Because the Automatic Orange Tester uses a finite number of test cases to
analyze the code, there is no guarantee that it will identify a problem in any
individual test campaign. It is therefore possible that a particular variable
value causes an error, but that value was never tested.

Similarly, since the Automatic Orange Tester builds test cases each time
your run it, there is not guarantee that it will produce the same results with
each test campaign.

You can specify the number of tests to run in each test campaign. Running
more tests increases the chances of finding a runtime error, but also takes
more time to complete.

Before Using the Automatic Orange Tester
Before you can use the Automatic Orange Tester, you must run a Polyspace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To run the verification:

9-48

Automatically Testing Orange Code

1 Open the Project Manager perspective.

2 Load the project Demo_C.cfg.

3 In the Analysis Options pane, expand the Polyspace inner settings
menu.

4 Select the Automatic Orange Tester check box.

The -prepare-automatic-tests option is enabled.

5 Click Run.

The Polyspace verification starts. During the compilation phase, the
software generates the data necessary to perform dynamic tests. The
Polyspace verification then continues as usual.

6 When the verification process completes, double-click the results file in the
Project Browser to open the Run-Time Checks perspective.

9-49

9 Managing Orange Checks

Launching the Automatic Orange Tester
Once the Polyspace verification is complete, you can use the Automatic
Orange Tester to perform dynamic tests of the unproven (orange) code.

To perform dynamic tests with the Automatic Orange Tester:

1 Open your results in the Run-Time Checks perspective.

2 Click (Launch the Polyspace Automatic Orange Tester) in the
toolbar to open the Automatic Orange Tester.

The Automatic Orange Tester opens.

9-50

Automatically Testing Orange Code

3 In the Test Campaign Configuration window, specify the following
parameters:

• Number of tests – Specifies the total number of test cases you want
to run. Running more tests increases the chances of finding a runtime
error, but also takes more time to complete.

• Number of iterations for infinite loops – Specifies the maximum
number of loop iterations to perform before the Automatic Orange Tester
identifies an infinite loop. A larger number of iterations decreases the

9-51

9 Managing Orange Checks

chances of incorrectly identifying an infinite loop, but also may take
more time to complete.

• Per test timeout – Specifies the maximum time that an individual test
can run (in seconds) before the Automatic Orange Tester moves on to
the next test. Increasing the time limit reduces the number of tests that
timeout, but can also increase the total verification time.

4 Click Start to begin testing.

The Automatic Orange Tester generates test cases and runs the dynamic
tests.

9-52

Automatically Testing Orange Code

5 If you want to stop the testing before it completes:

• Click Stop Current to stop the current test an move on to the next one.

• Click Stop All to immediately stop all tests.

9-53

9 Managing Orange Checks

Reviewing the Test Results
When testing is complete, the Automatic Orange Tester displays an overview
of the testing results, along with detailed information about each failed test.

Test Campaign Results
The Test Campaign Results window displays overview information about the
results of your dynamic tests, including:

• Completed tests – Displays the total number of tests completed.

• No Polyspace runtime errors detected – Displays the number of tests
that did not produce a runtime error.

• Total failed – Displays the number of tests that produced a runtime error.

• Number of checks/Tests with errors – Displays the number of
Polyspace checks that produced at least one failed test, as well as the total
number of tests that produced a runtime error.

• Timeout – Displays the number of tests that exceeded the specified Per
test timeout limit.

9-54

Automatically Testing Orange Code

• Stopped tests – The number of tests that were stopped manually.

Use the Test Campaign Results Window to see an overall assessment of
your test results, as well as to decide if you need to increase the Per test
timeout value.

Results Table
The Results table displays detailed information about each failed test, to help
you identify the cause of the runtime error. This information includes:

• The filename, line number, and column in which the error was found.

• The type of error that occurred.

• The number of test cases in which the error occurred.

In addition, You can view more details about any failed test by clicking on the
appropriate row in the Results table. The Test Case Detail dialog box opens.

9-55

9 Managing Orange Checks

The Test Case Detail dialog box displays the portion of the code in which the
error occurred, and gives detailed information about why each test case failed.
Since the Automatic Orange Tester performs runtime tests, this information
includes the actual values that caused the error.

You can use this information to quickly identify the cause of the error, and
determine if there is an actual bug in the code.

9-56

Automatically Testing Orange Code

Log
The Log window displays a complete list of all the tests which failed, as well
as summary information.

You can copy information from the log window to paste into other applications,
such as Microsoft® Excel®.

The log file is also saved in the Polyspace-Instrumented folder with the
following filename:
TestGenerator_day_month_year-time.out

Refining Data Ranges
The Automatic Orange Tester allows you to specify ranges for external
variables. This allows you to perform runtime tests using real-world values
for your variables, rather than randomly selected values.

Setting ranges for your variables reduces the number of tests that fail due
to unrealistic data values, allowing you to focus on actual problems, rather

9-57

9 Managing Orange Checks

than purely theoretical problems. Once you set data ranges, you can export
them to a DRS file for use in future verifications, reducing the number of
orange checks in your results (see “Exporting Data Ranges for Polyspace
Verification” on page 9-61).

To refine your data ranges:

1 In the Variables section at the top of the Automatic Orange Tester, identify
the variable for which you want to set a data range.

2 Select Advanced. The Edit Values dialog box opens.

9-58

Automatically Testing Orange Code

3 Set the appropriate values for the variable:

Single Value – Specifies a constant value for the variable.

Range of values, – Specifies a minimum and maximum value for the
variable.

Note For pointers, you can also specify the writing mode:

SING – The tests only write the object or first element in the array.

MULT – The tests write the complete object, or all elements in the array.

4 Click Next to edit the values for the next variable.

9-59

9 Managing Orange Checks

5 When you have finished setting values, click OK to save your changes
and close the Edit Values dialog box.

6 Click Start to retest the code.

The Automatic Orange Tester generates test cases, runs the tests, and
displays the updated results.

9-60

Automatically Testing Orange Code

The updated results show fewer failed tests, allowing you to focus in on
any actual code problems.

Saving and Reusing Your Configuration
You can save your Automatic Orange Tester preferences and variable ranges
for use in future dynamic testing.

To save your configuration:

1 Select File > Save.

2 Enter an appropriate name and click Save.

Your configuration is saved in a .tgf file.

To open a configuration from a previous verification:

1 Select File > Open.

2 Select the appropriate .tgf file, then click Open.

The configuration is opened.

When you open a previously saved configuration, the Log window displays
any differences in the configuration files. For example:

• If a variable does not exist in the new configuration, a warning is displayed.

• If the ranges for a variable are no longer valid (if the variable type changes,
for example), a warning is displayed and the range is changed to the largest
valid range for the new data type (if possible).

Exporting Data Ranges for Polyspace Verification
Once you have set the data ranges for your variables, you can export them to a
Data Range Specifications (DRS) file for use in future Polyspace verifications.
This allows you to reduce the number of orange checks identified in the
Run-Time Checks perspective.

To export your data ranges:

9-61

9 Managing Orange Checks

1 Set the appropriate values for each variable you want to specify.

2 Select File > Export DRS.

3 Enter an appropriate name and click Save.

The DRS file is saved.

For information on using a DRS file for Polyspace verifications, see “Specifying
Data Ranges for Variables and Functions (Contextual Verification)” on page
4-34.

Configuring Compiler Options
On UNIX, Solaris, or Linux systems, you must configure your compiler and
linker options before using the Automatic Orange Tester.

Note On Windows systems, the compiler options cannot be modified. You
can only configure the library dependencies.

To set compiler and linker options:

1 Open the Automatic Orange Tester, as described above.

2 Select Options > Configure.

3 The Preferences dialog box opens.

9-62

Automatically Testing Orange Code

4 Set the appropriate parameters for your compiler.

9-63

9 Managing Orange Checks

Technical Limitations
The Automatic Orange Tester has the following limitations:

• “Unsupported Polyspace Options” on page 9-64

• “Options with Limitations” on page 9-64

• “Unsupported C Language Constructions” on page 9-64

Unsupported Polyspace Options
The following options are not supported when you select
-prepare-automatic-tests.

• -entry-points

• -dialect

• -ignore-float-rounding

• -div-round-down

• -char-is-16its

• -short-is-8bits

• -respect-types-in-globals

• -respect-types-in-fields

In addition, Global asserts in the code of the form Pst_Global_Assert(A,B)
are not supported with the Automatic Orange Tester.

Options with Limitations
The following options cannot take specific values when you select
-prepare-automatic-tests.

• -target [tms320c3c | sharc21x61]

• -data-range-specification (in global assert mode)

Unsupported C Language Constructions
The code verification stops when any of the following characteristics are met:

9-64

Automatically Testing Orange Code

• ANSI C99 long long and long double types are unsupported for Windows
systems

• Calls to following routines are unsupported:

- va_start

- va_arg

- va_end

- va_copy

- setjmp

- sigsetjmp

- longjmp

- siglongjmp

The following C language constructions are ignored:

• The endianness of the target is not managed. The tests are performed as if
the user-defined target has the same endianness as the hardware on which
the Automatic Orange Tester is running

• Calls to the following routines are ignored:

- signal

- sigset

- sighold

- sigrelse

- sigpause

- sigignore

- sigaction

- sigpending

- sigsuspend

- sigvec

- sigblock

9-65

9 Managing Orange Checks

- sigsetmask

- sigprocmask

- siginterrupt

- srand

- srandom

- initstate

- setstate

9-66

10

Day to Day Use

• “Polyspace In One Click Overview” on page 10-2

• “Using Polyspace In One Click” on page 10-3

10 Day to Day Use

Polyspace In One Click Overview
Most developers verify the same files multiple times (writing new code, unit
testing, integration), and usually need to run verifications on multiple project
files using the same set of options. In a Microsoft Windows environment,
Polyspace In One Click provides a convenient way to streamline your work
when verifying several files using the same set of options.

Once you have set up a project file with the options you want, you designate
that project as the active project, and then send the source files to Polyspace
software for verification. You do not have to update the project with source
file information.

On a Windows systems, the plug-in provides a Polyspace Toolbar in the
Windows Taskbar, and a Send To option on the desktop pop-up menu:

10-2

Using Polyspace® In One Click

Using Polyspace In One Click

In this section...

“Polyspace In One Click Workflow” on page 10-3

“Setting the Active Project” on page 10-3

“Launching Verification” on page 10-5

“Using the Taskbar Icon” on page 10-7

Polyspace In One Click Workflow
Using Polyspace In One Click involves two steps:

1 Setting the active project.

2 Sending files to Polyspace software for verification.

Setting the Active Project
The active project is the project that Polyspace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. Polyspace software uses the analysis
options from the project; it does not use the source files or results folder from
the project.

To set the active project:

1 In the taskbar area of your Windows desktop, right-click the Polyspace In
One Click icon:

The context menu appears.

10-3

10 Day to Day Use

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box opens:

3 Select the project you want to use as the active project.

4 Click Open to apply the changes and close the dialog box.

10-4

Using Polyspace® In One Click

Note You can also set the active project by right-clicking on a project file
(.cfg or .dsk) file and selecting Send To > Polyspace.

Launching Verification
Polyspace in One Click allows you to send multiple files to Polyspace software
for verification.

To send a file to Polyspace software for verification:

1 Navigate to the folder containing the source files you want to verify.

2 Right-click the file you want to verify.

The context menu appears.

3 Select Send To > Polyspace.

10-5

10 Day to Day Use

The Polyspace basic settings dialog box appears.

Note The options you specify the basic settings dialog box override any
options set in the configuration file. These options are also preserved
between verifications.

4 Enter the appropriate parameters for your verification.

5 Click Start.

10-6

Using Polyspace® In One Click

The verification starts and the verification log appears.

Using the Taskbar Icon
The Polyspace in One Click Taskbar icon allows you to access various software
features.

Click the Polyspace Taskbar Icon, then select one of the following options:

10-7

10 Day to Day Use

• Set active project— Allows you to set the active configuration file. Before
you start, you have to choose a Polyspace configuration file which contains
the common options. You can choose a template of a previous project and
move it to your working folder.

A standard file browser allows you to choose the configuration file. If you
have multiple configuration files, you can quickly switch between them
using the browse history.

Note No configuration file is selected by default. You can create an empty
file with a .cfg extension.

• Open active project — Opens the active configuration file. This allows
you to update the project using the Polyspace Verification Environment
Project Manager perspective. It allows you to specify all Polyspace common
options, including directives of compilation, options, and paths of standard
and specific headers. It does not affect the precision of a verification or
the results folder.

• Polyspace - Run-Time Checks — Opens the Polyspace Verification
Environment, Run-Time Checks perspective. This allows you to review
verification results in the standard graphical interface.

• Polyspace - Project Manager — Opens the Polyspace Verification
Environment, Project Manager perspective. This allows you to launch a
verification using the standard Polyspace graphical interface.

10-8

Using Polyspace® In One Click

• Spooler— Opens the Polyspace Queue Manager Interface. If you selected
a server verification in the “Polyspace Preferences” dialog box, the spooler
allows you to follow the status of the verification.

10-9

10 Day to Day Use

10-10

11

MISRA C Coding Rules
Checker

• “Polyspace MISRA C Coding Rules Checker Overview” on page 11-2

• “Setting Up MISRA C Checking” on page 11-3

• “Viewing MISRA C Checker Results” on page 11-11

• “Coding Rules Assistant” on page 11-21

• “Software Quality Objective Subsets of Coding Rules” on page 11-26

• “MISRA C Coding Rule Support” on page 11-31

11 MISRA C® Coding Rules Checker

Polyspace MISRA C Coding Rules Checker Overview
Polyspace software can check that C code complies with MISRA C 2004
standards.9

Note The Polyspace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

The MISRA checker enables Polyspace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification.

The MISRA checker can check nearly all of the 141 MISRA C:2004 rules. In
addition to the MISRA rules, the software checks one additional rule (15.0),
to improve precision.

There are two subsets of MISRA coding rules that can have a direct or indirect
impact on the selectivity (reliability percentage) of your verification results.
You can select these subsets directly when setting up MISRA C Checking.
These subsets are defined in “Software Quality Objective Subsets of Coding
Rules” on page 11-26.

Note If any source files in the verification do not compile, MISRA C checking
will be incomplete. The coding rules checker results will not contain results
for files that did not compile, and may not contain full results for the files that
did compile, since some rules are checked only after compilation completes.

9. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-2

http://www.misra-c.com/

Setting Up MISRA C® Checking

Setting Up MISRA C Checking

In this section...

“Setting MISRA C Checking Option” on page 11-3

“Creating a MISRA C Rules File” on page 11-5

“Excluding Files from MISRA C Checking” on page 11-7

“Excluding All Include Folders from MISRA C Checking” on page 11-8

“Configuring Text and XML Editors” on page 11-9

“Commenting Code to Indicate Known Rule Violations” on page 11-10

Setting MISRA C Checking Option
To check MISRA C compliance, you set an option in your project before
running a verification. Polyspace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Analysis options part of the Configuration pane, expand the
Compliance with standards option.

The Compliance with standards options appear.

2 Select the Check MISRA C rules check box.

3 Expand the Check MISRA C rules option.

Two options, MISRA C rules configuration and Files and folders to
ignore, appear.

11-3

11 MISRA C® Coding Rules Checker

4 In theMISRA C rules configuration drop-down list, select which MISRA
C rules to check:

• all-rules – Checks all possible MISRA C coding rules. All violations
are reported as warnings.

• SQO-subset1 – Checks a subset of MISRA C rules that have a direct
impact on the selectivity of verification. All violations are reported as
warnings. For more information, see “SQO Subset 1 – Coding Rules with
a Direct Impact on Selectivity” on page 11-26.

• SQO-subset2 – Checks a second subset of MISRA C rules that have an
indirect impact on the selectivity of verification, as well as the rules
contained in SQO-subset1. All violations are reported as warnings. For
more information, see “SQO Subset 2 – Coding Rules with an Indirect
Impact on Selectivity” on page 11-28.

• custom – Checks a specified set of coding rules. When you select this
option, you must create a rules file that specifies which rules to check
and whether to report an error or warning for violations of each rule. For
more information, see “Creating a MISRA C Rules File” on page 11-5.

11-4

Setting Up MISRA C® Checking

5 Specify any files to exclude from MISRA C checking. For more information,
see “Excluding Files from MISRA C Checking” on page 11-7.

Creating a MISRA C Rules File
If you specify custom in theMISRA C rules configuration drop-down list,
you must provide a rules file to specify which MISRA C rules to check.

To create a custom rules file:

1 In theMISRA C rules configuration drop-down list, select custom.

2 Click the browse button to the right of the MISRA C rules
configuration option.

The New File window opens, displaying a table of rules.

11-5

11 MISRA C® Coding Rules Checker

3 For each rule, you specify one of these states:

11-6

Setting Up MISRA C® Checking

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
is violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

4 Click OK to save the rules and close the window.

The Save as dialog box opens.

5 In File, enter a name for the rules file.

6 Click OK to save the file and close the dialog box.

Excluding Files from MISRA C Checking
You can exclude individual files or folders from MISRA C checking. For
example, you might want to exclude include files.

Note You can also exclude all include folders from MISRA C checking. See
“Excluding All Include Folders from MISRA C Checking” on page 11-8.

To exclude files from MISRA C checking:

1 Click the browse button to the right of the Files and folders to
ignore option.

The Files and folders to ignore dialog box opens.

11-7

11 MISRA C® Coding Rules Checker

2 Click the folder icon .

3 Select the files or folders (such as include files) you want to ignore.

4 Click OK.

The selected files appear in the list of files to ignore.

5 Click OK to close the dialog box.

Excluding All Include Folders from MISRA C Checking
You can exclude all include folders from MISRA C checking. If you are
checking a large code base (especially when using standard or Visual
headers), excluding all include folders can significantly improve the speed
of code analysis.

To exclude all include folders from MISRA C checking:

1 In the Analysis options section of the Project Manager, select Compliance
with standards > Check MISRA C rules > Files and folders to
ignore.

2 Enter all.

All include folders are excluded from checking.

11-8

Setting Up MISRA C® Checking

Configuring Text and XML Editors
Before you check MISRA rules, configure your text and XML editors in the
Preferences. Configuring text and XML editors allows you to view source files
and MISRA reports directly from the Coding Rules perspective.

To configure your text and .XML editors:

1 Select Options > Preferences.

The Preferences dialog box opens.

2 Select the Editors tab.

The Editors tab opens.

3 Specify an XML editor to use to view MISRA-C reports. For example:

C:\Program Files\MSOffice\Office12\EXCEL.EXE

11-9

11 MISRA C® Coding Rules Checker

4 Specify a Text editor to use to view source files from the Project Manager
logs. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 Select your text editor in the Arguments drop-down menu to automatically
specify the command line arguments for that editor.

• Emacs

• Notepad++

• UltraEdit

• VisualStudio

• Wordpad

If you are using another text editor, select Custom from the drop-down
menu, and specify the command line arguments for the text editor.

6 Click OK.

Commenting Code to Indicate Known Rule Violations
You can place comments in your code that inform Polyspace software of
known or acceptable coding rule violations. The software uses the comments
to highlight, in the Coding Rules perspective, errors or warnings related to
the coding rule violations. Using this functionality, you can:

• Hide known coding rule violations while analyzing new coding rule
violations.

• Inform other users of known coding rule violations.

The Coding Rules perspective displays the information that you provide
within your code comments, and marks the violations as Justified.

For more information, see “Annotating Code to Indicate Known Coding Rule
Violations” on page 5-34.

11-10

Viewing MISRA C® Checker Results

Viewing MISRA C Checker Results

In this section...

“Running a Verification with MISRA C Checking” on page 11-11

“Examining MISRA C Violations” on page 11-12

“Commenting and Justifying MISRA C Violations ” on page 11-15

“Opening Source Files from Coding Rules Perspective” on page 11-17

“Opening MISRA-C Report” on page 11-18

“Generating Coding Rules Report” on page 11-19

“Copying and Pasting Justifications” on page 11-20

Running a Verification with MISRA C Checking
When you run a verification with the MISRA C option selected, the verification
checks most of the MISRA C rules during the compile phase.10

Note Some rules address run-time errors.

The verification stops if there is a violation of a rule with state Error.

To start the verification:

1 Click the Run button on the Project Manager toolbar.

2 Code analysis begins.

• If the coding rules checker detects violations of coding rules set to error,
the message “Verification Failed” appears at the bottom of the
Project Manager perspective, and the Output Summary indicates that
the verification has detected MISRA errors.

10. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-11

11 MISRA C® Coding Rules Checker

• If there are no violations of rules set to error, code verification continues
after rules checking is complete.

3 When rules checking is complete, the fileMISRA-C-report.xml appears
in the Project Browser Results folder. This file contains the results from
the coding rules checker.

Note If any source files in the verification do not compile, MISRA C checking
will be incomplete. The coding rules checker results will not contain results
for files that did not compile, and may not contain full results for the files that
did compile, since some rules are checked only after compilation completes.

Examining MISRA C Violations
When code analysis is complete, you can view results in the Coding Rules
perspective.

To examine MISRA C violations:

1 Double-clickMISRA-C-report.xml in the Project Browser Result folder.

The Coding Rules perspective appears, displaying a list of MISRA C
violations.

11-12

Viewing MISRA C® Checker Results

2 Click any of the violations to see a description of the violated rule, the
full path of the file in which the violation was found, and the source code
containing the violation.

11-13

11 MISRA C® Coding Rules Checker

In this example, the log reports a violation of rule 16.3. A function
prototype declaration in include.h is missing an identifier.

3 To open the source file containing the coding rule violation, right-click the
row containing the violation, then select Open Source File.

The appropriate file opens in your text editor.

Note Before you can open source files, you must configure a text editor.
See “Configuring Text and XML Editors” on page 11-9.

11-14

Viewing MISRA C® Checker Results

4 Correct the MISRA violation and run the verification again.

Commenting and Justifying MISRA C Violations
When reviewing coding rules violations in the Coding Rules perspective, you
can classify the seriousness of each violation, mark violations as Justified,
and enter comments to describe the results of your review.

After you mark violations as Justified, you can hide them. This helps you
track the progress of your review and avoid reviewing the same violation
twice.

To review, comment, and justify a violation:

1 In the Coding Rules perspective, select the violation you want to review.

The rule details pane displays a description of the violated rule, the full
path of the file in which the violation was found, and the source code
containing the violation.

11-15

11 MISRA C® Coding Rules Checker

2 After you review the violation, select a Classification to describe the
seriousness of the issue:

• High

• Medium

• Low

• Not a defect

3 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

11-16

Viewing MISRA C® Checker Results

• No Action Planned

• Other

• Restart with different options

• Undecided

Note You can also define your own statuses. See “Defining Custom Status
” on page 8-61.

4 In the comment box, enter additional information about the violation.

5 Select the Justified check box to indicate that you have justified this check.

Note To hide coding rule violations that you justify, select the Hide
justified violated rules check box.

Opening Source Files from Coding Rules Perspective
You can use the Coding Rules perspective to open the source file containing a
coding rule violation.

To open the source file containing a coding rules violation:

1 In the Coding Rules perspective, select the violation you want to review.

2 Right-click the row containing the violation, then select Open Source File.

The appropriate file opens in your text editor.

11-17

11 MISRA C® Coding Rules Checker

Note Before you can open source files, you must configure a text editor.
See “Configuring Text and XML Editors” on page 11-9.

Opening MISRA-C Report
After you check MISRA rules, you can generate an XML report containing all
the errors and warnings reported by the MISRA-C checker.

Note You must configure an XML editor before you can open a MISRA-C
report. See “Configuring Text and XML Editors” on page 11-9.

To view the MISRA-C report:

1 Click the Coding Rules button in the Polyspace Verification Environment
toolbar.

A list of MISRA C violations appear in the log part of the window.

2 Right click any row in the log, and select Open MISRA-C Report.

The report opens in your XML editor.

11-18

Viewing MISRA C® Checker Results

Note If any source files in the verification do not compile, the verification
fails with compilation errors, and MISRA C checking is incomplete. If this
happens, the MISRA report is not exhaustive, since it does not contain results
for files that did not compile, and may not contain full results (not all rules
are checked) for the files that did compile.

Generating Coding Rules Report
You can use the Polyspace Report Generator to generate reports about
compliance with MISRA C Coding Rules, as well as other reports.

For information on using the Polyspace Report Generator, see “Generating
Reports of Verification Results” on page 8-71.

11-19

11 MISRA C® Coding Rules Checker

Copying and Pasting Justifications
Instead of typing the full syntax of an annotation comment in your source
code, you can copy an annotation template from the Coding Rules perspective,
paste it into your source code, and modify the template to comment the check.

To copy the justification template to the clipboard:

1 In the Coding Rules perspective, select any violation.

2 Right-click the violation, then select Add Pre-Justification to
Clipboard.

The justification string is copied to the clipboard.

3 Open the source file containing the violation you want to justify.

4 Navigate to the code you want to comment, and paste the justification
template string on the line immediately before the line you want to
comment.

5 Modify the template text to comment the code appropriately.

6 Save the file.

11-20

Coding Rules Assistant

Coding Rules Assistant

In this section...

“Polyspace Metrics and Coding Rules Assistant” on page 11-21

“Reviewing Assistant Coding Rules” on page 11-21

Polyspace Metrics and Coding Rules Assistant
If you use the Polyspace Metrics Web interface to track coding rule violations,
you can use the Coding Rules Assistant to review only the rule violations
appropriate for your current Software Quality Objective level (SQO-level).

The Coding Rules Assistant displays only the rule violations you need to
review to meet the requirements of your current SQO level. For example, if
your quality level is set to SQO-1 in the Web interface, the Assistant Coding
Rules pane displays only violations of the rules specified by “SQO Subset 1 –
Coding Rules with a Direct Impact on Selectivity” on page 11-26.

Note The Assistant Coding Rules pane displays rule violations only if you
open results from the Polyspace Metrics Web interface.

For more information on the Polyspace Metrics Web interface, see Chapter
12, “Software Quality with Polyspace Metrics”.

Reviewing Assistant Coding Rules
If you use the Polyspace Metrics Web interface to track coding rule violations,
you can use the Coding Rules Assistant to review only the rule violations
appropriate for your current Software Quality Objective level (SQO-level).

For more information on the Polyspace Metrics Web interface, see Chapter
12, “Software Quality with Polyspace Metrics”.

To use the Coding Rules Assistant:

1 Open your project in the Polyspace Metrics Web interface.

11-21

11 MISRA C® Coding Rules Checker

2 Select the Coding Rules tab.

A list of files and corresponding rule violations appears.

3 Click the value in the Violations column.

The Polyspace Verification Environment opens, showing the rule violations
in the Coding Rules perspective.

11-22

Coding Rules Assistant

4 In the Assistant Coding Rules toolbar, click the Show Next Match icon

.

• The Assistant Coding Rules pane shows the current rule violation.

• The MISRA C pane displays the current rule violation.

• The rule details pane displays a description of the violated rule, the
full path of the file in which the violation was found, and the source
code containing the violation.

11-23

11 MISRA C® Coding Rules Checker

5 Review the current check.

6 If you want to classify the violation as a defect, from the Classification
cell drop-down list, select High, Medium, or Low . This will increment the
Confirmed Defect value in Polyspace Metrics.

7 In the Status drop-down list, assign a status to this violation. For example,
Fix or No action planned. When you assign a status to a violation, the
software considers the violation to be reviewed.

8 If you consider the presence of a violation justifiable, select the Justified
check box. In the Comments column, you can enter remarks justifying
this violation.

11-24

Coding Rules Assistant

9 Continue to click the the Show Next Match icon until you have gone
through all of the rule violations.

10 Save the project. The software updates review and justification information
in the Polyspace Metrics repository. When you return to Polyspace Metrics,
click Refresh to view the updated information.

Note Classifying a coding rule violation as a defect or assigning a status for
an unreviewed violation in the Polyspace window, increases the corresponding
metric values (Confirmed Defects and Review Progress) in the Summary
and Coding Rules views of Polyspace Metrics.

11-25

11 MISRA C® Coding Rules Checker

Software Quality Objective Subsets of Coding Rules

In this section...

“SQO Subset 1 – Coding Rules with a Direct Impact on Selectivity” on
page 11-26

“SQO Subset 2 – Coding Rules with an Indirect Impact on Selectivity” on
page 11-28

SQO Subset 1 – Coding Rules with a Direct Impact
on Selectivity
The following set of coding rules will typically improve the selectivity of your
verification results.

Rule I Description

MISRA 8.11 The static storage class specifier shall be used in definitions
and declarations of objects and functions that have internal
linkage

MISRA 8.12 When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization

MISRA 11.2 Conversion shall not be performed between a pointer to an
object and any type other than an integral type, another
pointer to a object type or a pointer to void

MISRA 11.3 A cast should not be performed between a pointer type and
an integral type

MISRA 12.12 The underlying bit representations of floating-point values
shall not be used

MISRA 13.3 Floating-point expressions shall not be tested for equality
or inequality

11-26

Software Quality Objective Subsets of Coding Rules

Rule I Description

MISRA 13.4 The controlling expression of a for statement shall not
contain any objects of floating type

MISRA 13.5 The three expressions of a for statement shall be concerned
only with loop control

MISRA 14.4 The goto statement shall not be used.

MISRA 14.7 A function shall have a single point of exit at the end of
the function

MISRA 16.1 Functions shall not be defined with variable numbers of
arguments

MISRA 16.2 Functions shall not call themselves, either directly or
indirectly

MISRA 16.7 A pointer parameter in a function prototype should be
declared as pointer to const if the pointer is not used to
modify the addressed object

MISRA 17.3 >, >=, <, <= shall not be applied to pointer types except
where they point to the same array

MISRA 17.4 Array indexing shall be the only allowed form of pointer
arithmetic

MISRA 17.5 The declaration of objects should contain no more than 2
levels of pointer indirection

MISRA 17.6 The address of an object with automatic storage shall not
be assigned to an object that may persist after the object
has ceased to exist.

MISRA 18.3 An area of memory shall not be reused for unrelated
purposes.

MISRA 18.4 Unions shall not be used

MISRA 20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

11-27

11 MISRA C® Coding Rules Checker

SQO Subset 2 – Coding Rules with an Indirect Impact
on Selectivity
Good design practices generally lead to less code complexity, which can
improve the selectivity of your verification results. The following set of coding
rules help address design issues that can impact selectivity.

Note Specifying SQO-subset2 in your MISRA C rules configuration
checks both the rules listed in SQO Subset 1 and SQO Subset 2.

Rule # Description

MISRA 6.3 typedefs that indicate size and signedness should be used
in place of the basic types

MISRA 8.7 Objects shall be defined at block scope if they are only
accessed from within a single function

MISRA 9.2 Braces shall be used to indicate and match the structure in
the nonzero initialization of arrays and structures

MISRA 9.3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized

MISRA 10.3 The value of a complex expression of integer type may
only be cast to a type that is narrower and of the same
signedness as the underlying type of the expression

MISRA 10.5 Bitwise operations shall not be performed on signed integer
types

MISRA 11.1 Conversion shall not be performed between a pointer to a
function and any type other than an integral type

MISRA 11.5 Type casting from any type to or from pointers shall not
be used

MISRA 12.1 Limited dependence should be placed on C’s operator
precedence rules in expressions

MISRA 12.2 The value of an expression shall be the same under any
order of evaluation that the standard permits

11-28

Software Quality Objective Subsets of Coding Rules

Rule # Description

MISRA 12.5 The operands of a logical && or || shall be
primary-expressions

MISRA 12.6 Operands of logical operators (&&, || and !) should be
effectively Boolean. Expression that are effectively Boolean
should not be used as operands to operators other than
(&&, || or !)

MISRA 12.9 The unary minus operator shall not be applied to an
expression whose underlying type is unsigned

MISRA 12.10 The comma operator shall not be used

MISRA 13.1 Assignment operators shall not be used in expressions that
yield Boolean values

MISRA 13.2 Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean

MISRA 13.6 Numeric variables being used within a “for” loop for
iteration counting should not be modified in the body of
the loop

MISRA 14.8 The statement forming the body of a switch, while, do while
or for statement shall be a compound statement

MISRA 14.10 All if else if constructs should contain a final else clause

MISRA 15.3 The final clause of a switch statement shall be the default
clause

MISRA 16.3 Identifiers shall be given for all of the parameters in a
function prototype declaration

MISRA 16.8 All exit paths from a function with non-void return type
shall have an explicit return statement with an expression

MISRA 16.9 A function identifier shall only be used with either a
preceding &, or with a parenthesized parameter list, which
may be empty

MISRA 19.4 C macros shall only expand to a braced initializer, a
constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct

11-29

11 MISRA C® Coding Rules Checker

Rule # Description

MISRA 19.9 Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives

MISRA 19.10 In the definition of a function-like macro each instance of
a parameter shall be enclosed in parentheses unless it is
used as the operand of # or ##

MISRA 19.11 All macro identifiers in preprocessor directives shall be
defined before use, except in #ifdef and #ifndef preprocessor
directives and the defined() operator

MISRA 19.12 There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

MISRA 20.3 The validity of values passed to library functions shall be
checked.

11-30

MISRA C® Coding Rule Support

MISRA C Coding Rule Support

In this section...

“MISRA C Rules Supported” on page 11-31

“MISRA C Rules Not Checked” on page 11-64

MISRA C Rules Supported
The Polyspace coding rules checker can check the following MISRA C
coding rules. Details regarding how individual rules are checked and any
limitations on the scope of checking are described in the “Detailed Polyspace
Specification” column.

Most violations are reported during the compile phase of a verification.
However, violations of rules 9.1 (NIV checks), 12.11 (OVFL check using
-scalar-overflows-checks signed-and-unsigned), 13.7 (gray checks), 14.1
(gray checks), 16.2 (Call graph) and 21.1 are detected during code verification,
and reported as runtime errors.

Environment

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

1.1 All code shall conform
to ISO® 9899:1990
“Programming languages
- C”, amended and
corrected by ISO/IEC
9899/COR1:1995, ISO/IEC
9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996.

• ANSI C does not allow
‘#include_next’

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not
allow‘#unassert’

• ANSI C does not allow
testing assertions

All the supported
extensions lead to a
violation of this MISRA
rule. Standard compilation
error messages do not
lead to a violation of this
MISRA rule and remain
unchanged. Can be turned
to Off (see -misra2 option).

11-31

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

• ANSI C does not allow
‘#ident’

• ANSI C does not allow
‘#sccs’

• text following ‘#else’
violates ANSI standard.

• text following ‘#endif’
violates ANSI standard.

• text following ‘#else’ or
‘#endif’ violates ANSI
standard.

• ANSI C90 forbids ’long
long int’ type.

• ANSI C90 forbids ’long
double’ type.

• ANSI C90 forbids long
long integer constants.

• Keyword ’inline’ should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

11-32

MISRA C® Coding Rule Support

Language Extensions

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

2.1 Assembly language shall be
encapsulated and isolated.

Assembly language shall be
encapsulated and isolated.

No warnings if code
is encapsulated in asm
functions or in asm pragma
(only warning is given on
asm statements even if it is
encapsulated by aMACRO).

2.2 source code shall only use /*
*/ style comments

C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Character Sets

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

4.1 Only those escape sequences
which are defined in the
ISO C standard shall be
used.

\<character> is not an ISO
C escape sequence
Only those escape
sequences which are
defined in the ISO C
standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

11-33

11 MISRA C® Coding Rules Checker

Identifiers

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

5.1 Identifiers (internal and
external) shall not rely on
the significance of more
than 31 characters

Identifier ’XX’ should not
rely on the significance of
more than 31 characters.

All identifiers (global, static
and local) are checked.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide
that identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{ typedef name }’%s’ should
not be reused. (already
used as { typedef name } at
%s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a
unique identifier

{tag name }’%s’ should not
be reused. (already used as
{tag name } at %s:%d)

warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static
storage duration should be
reused.

{ static identifier/parameter
name }’%s’ should not be
reused. (already used as {
static identifier/parameter
name } at %s:%d)

warning when a static
name is reused as another
identifier name

11-34

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

5.6 No identifier in one name
space should have the same
spelling as an identifier in
another name space, with
the exception of structure
and union member names.

{member name }’%s’ should
not be reused. (already
used as { member name } at
%s:%d)

warning when a idf in a
namespace is reused in
another namespace

5.7 No identifier name should
be reused.

{identifier}’%s’ should not
be reused. (already used as
{ identifier} at %s:%d)

warning on other conflicts
(including member names)

Types

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

6.1 The plain char type shall
be used only for the storage
and use of character values

Only permissible operators
on plain chars are ’=’, ’==’ or
’!=’ operators.

There is a warning when a
plain char is used with an
operator other than =, == or
!=.

6.3 typedefs that indicate size
and signedness should be
used in place of the basic
types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition. There is
no exception on bitfields.

11-35

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

6.4 Bit fields shall only be
defined to be of type
unsigned int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

Constants

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

7.1 Octal constants (other
than zero) and octal escape
sequences shall not be used.

• Octal constants other
than zero and octal
escape sequences shall
not be used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

Declarations and Definitions

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

8.1 Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

• Function XX has no
complete prototype
visible at call.

Prototype visible at call
must be complete.

11-36

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

• Function XX has no
prototype visible at
definition.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function
’XX’ incompatible with its
declaration.

Assumes that rule 8.1 is
not violated. The rule is
restricted to compatible
types. Can be turned to Off

8.4 If objects or functions
are declared more than
once their types shall be
compatible.

• If objects or functions
are declared more than
once their types shall be
compatible.

• Global declaration
of ’XX’ function has
incompatible type with
its definition.

• Global declaration
of ’XX’ variable has
incompatible type with
its definition.

During link phase, errors
are converted into warnings
with -permissive-link
option.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object ’XX’ should not be
defined in a header file.

• Function ’XX’ should not
be defined in a header
file.

Tentative of definitions are
considered as definitions.

11-37

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

8.6 Functions shall always be
declared at file scope.

Function ’XX’ should be
declared at file scope.

8.7 Objects shall be defined
at block scope if they are
only accessed from within a
single function

Object ’XX’ should be
declared at block scope.

Restricted to static objects.

8.8 An external object or
function shall be declared in
one file and only one file

Function/Object ’XX’ has
external declarations in
multiples files.

Restricted to explicit extern
declarations (tentative of
definitions are ignored).

8.9 Definition: An identifier
with external linkage shall
have exactly one external
definition.

• Procedure/Global
variable XX multiply
defined.

• Forbidden multiple
tentative of definition for
object XX.

• Global variable has
multiples tentative of
definitions

Tentative of definitions
are considered as
definitions, No warning
on undefined objects with
-allow-undef-variables
option, No warning on
predefined symbols.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX
should have internal
linkage.

Not checked if
-main-generator option is
set. Assumes that 8.1 is not
violated. No warning if 0
uses.

11-38

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared
with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

Array XX has unknown
size.

Initialization

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

9.1 All automatic variables
shall have been assigned a
value before being used.

Checked during code
verification.

Violations displayed as NIV
checks in the verification
results.

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

9.3 In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

11-39

11 MISRA C® Coding Rules Checker

Arithmetic Type Conversion

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

10.1 The value of an expression
of integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion
of the expression of
underlying type ?? to
the type ?? that is not a
wider integer type of the
same signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are ?? and ??

• Implicit conversion of
the binary right hand
operand of underlying
type ?? to ?? that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type ?? to
?? that is not an integer
type.

• Implicit conversion of
the binary right hand
operand of underlying
type ?? to ?? that is not
a wider integer type of
the same signedness or
Implicit conversion of
the binary ? left hand
operand of underlying
type ?? to ??, but it is a
complex expression.

1 ANSI C base types order
(signed char, short, int,
long) defines that T2 is
wider than T1 if T2 is
on the right hand of T1
or T2 = T1. The same
interpretation is applied
on the unsigned version
of base types.

2 An expression of bool or
enum types has int as
underlying type.

3 Plain char may have
signed or unsigned
underlying type
(depending on Polyspace
target configuration or
option setting).

4 The underlying type
of a simple expression
of struct.bitfield is the
base type used in the
bitfield definition, the
bitfield width is not
token into account and it
assumes that only signed
| unsigned int are used
for bitfield (Rule 6.4).

11-40

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

10.1
(cont.) • Implicit conversion

of complex integer
expression of underlying
type ?? to ??.

• Implicit conversion of
non-constant integer
expression of underlying
type ?? in function return
whose expected type is
??.

• Implicit conversion of
non-constant integer
expression of underlying
type ?? as argument
of function whose
corresponding parameter
type is ??.

10.2 The value of an expression
of floating type shall not
be implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of
the expression from ??
to ?? that is not a wider
floating type.

• Implicit conversion of
the binary ? right hand
operand from ?? to
??, but it is a complex
expression.

• Implicit conversion of
the binary ? right hand
operand from ?? to
?? that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from ??

ANSI C base types order
(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or
T2 = T1.

11-41

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

to ??, but it is a complex
expression.

• Implicit conversion
of complex floating
expression from ?? to ??.

• Implicit conversion of
floating expression of ??
type in function return
whose expected type is
??.

• Implicit conversion of
floating expression of
?? type as argument
of function whose
corresponding parameter
type is ??.

10.3 The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex expression of
underlying type ?? may
only be cast to narrower
integer type of same
signedness, however the
destination type is ??.

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied
on the unsigned version
of base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target

11-42

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

configuration or option
setting).

• The underlying type
of a simple expression
of struct.bitfield is the
base type used in
the bitfield definition,
the bitfield width is
not token into account
and it assumes that only
signed, unsigned int are
used for bitfield (Rule
6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of ??
type may only be cast to
narrower floating type,
however the destination
type is ??.

ANSI C base types order
(float, double) defines that
T1 is narrower than T2 if
T2 is on the right hand of
T1 or T2 = T1.

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type
of the operand

Bitwise [<<|~] is applied
to the operand of
underlying type [unsigned
char|unsigned short], the
result shall be immediately
cast to the underlying type.

10.6 The “U” suffix shall be
applied to all constants of
unsigned types

No explicit ‘U suffix on
constants of an unsigned
type.

11-43

11 MISRA C® Coding Rules Checker

Pointer Type Conversion

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

11.1 Conversion shall not be
performed between a
pointer to a function and
any type other than an
integral type

Conversion shall not be
performed between a
pointer to a function and
any type other than an
integral type.

Casts and implicit
conversions involving a
function pointer

11.2 Conversion shall not be
performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void

Conversion shall not be
performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void.

There is also a warning on
qualifier loss

11.3 A cast should not be
performed between a
pointer type and an integral
type

A cast should not be
performed between a
pointer type and an integral
type.

Exception on zero constant.
Extended to all conversions

11.4 A cast should not be
performed between a
pointer to object type and
a different pointer to object
type.

A cast should not be
performed between a
pointer to object type and a
different pointer to object
type.

Extended to all conversions

11.5 A cast shall not be
performed that removes
any const or volatile
qualification from the
type addressed by a pointer

A cast shall not be
performed that removes
any const or volatile
qualification from the
type addressed by a pointer

Extended to all conversions

11-44

MISRA C® Coding Rule Support

Expressions

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

12.1 Limited dependence
should be placed on C’s
operator precedence rules
in expressions

Limited dependence
should be placed on C’s
operator precedence rules
in expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of ‘sym’
depends on the order
of evaluation.

• The value of volatile ‘sym’
depends on the order of
evaluation because of
multiple accesses.

The expression is a simple
expression of symbols
(Unlike i = i++; no detection
on tab[2] = tab[2]++;). Rule
12.2 check assumes that no
assignment in expressions
that yield a Boolean values
(rule 13.1) and the comma
operator is not used (rule
12.10).

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

he size of operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses and function calls

12.4 The right hand operand of
a logical && or || operator
shall not contain side
effects.

The right hand operand of
a logical && or || operator
shall not contain side
effects.

No warning on volatile
accesses and function calls.

12.5 The operands of a logical
&& or || shall be
primary-expressions.

• operand of logical && is
not a primary expression

• operand of logical || is
not a primary expression

• The operands of a logical
&& or || shall be
primary-expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

11-45

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

12.6 Operands of logical
operators (&&, || and
!) should be effectively
Boolean. Expression that
are effectively Boolean
should not be used as
operands to operators other
than (&&, || or !).

• Operand of ’!’ logical
operator should be
effectively Boolean. Left
operand of ’%s’ logical
operator should be
effectively Boolean.

• Right operand of ’%s’
logical operator should
be effectively Boolean.

• Boolean should not be
used as operands to
operators other than
’&&’, ’||’ or ’!’.

"the operand of a logical
operator should be a
Boolean". As there are no
Boolean in "C" but as the
standard assumes it, some
operator return Boolean
like expression (var == 0).
Example:

unsigned char flag; if
(!flag) raises the rule:
the operand of "!" is "flag".
And "flag" is not a Boolean
but an unsigned char.
To be 12.6 MISRA
compliant, the code need to
be written like this:

if (!(flag != 0))
or if (flag == 0)

12.7 Bitwise operators shall
not be applied to operands
whose underlying type is
signed

• [~/Left Shift/Right
shift/&] operator applied
on an expression whose
underlying type is signed.

• Bitwise ~ on operand of
signed underlying type
??.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type ??.

• Bitwise [& | ^] on two
operands of s

The underlying type for
an integer used in a
re-processor expression is
signed when :

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

11-46

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

12.8 The right hand operand of
a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative

• shift amount is bigger
than 64

• Bitwise [<< >>] count out
of range [0 ..X] (width of
the underlying type ?? of
the left hand operand -
1)..

The numbers that
are manipulated in
preprocessing directives
are 64 bits wide so that
valid shift range is between
0 and 63

Check is also extended
onto bitfields with the field
width or the width of the
base type when it is within
a complex expression

12.9 The unary minus operator
shall not be applied to
an expression whose
underlying type is unsigned.

• Unary - on operand of
unsigned underlying type
??.

• Minus operator applied
to an expression whose
underlying type is
unsigned

The underlying type for
an integer used in a
re-processor expression is
signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.10 The comma operator shall
not be used.

The comma operator shall
not be used.

11-47

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

12.12 The underlying bit
representations of
floating-point values shall
not be used.

The underlying bit
representations of
floating-point values shall
not be used.

Warning on casts with float
pointers (excepted with void
*).

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

warning when ++ or --
operators are not used
alone.

Control Statement Expressions

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

13.1 Assignment operators shall
not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

13.2 Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example:
if (2)

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests
only.

13.4 The controlling expression
of a for statement shall
not contain any objects of
floating type

The controlling expression
of a for statement shall
not contain any objects of
floating type

If for index is a variable
symbol, checked that it is
not a float.

11-48

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

13.5 The three expressions of
a for statement shall be
concerned only with loop
control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should be
an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

Checked if the for loop
index (V) is a variable
symbol; checked if V is
the last assigned variable
in the first expression
(if present). Checked
if, in first expression, if
present, is assignment
of V; checked if in 2nd
expression, if present,
must be a comparison
of V; Checked if in 3rd
expression, if present, must
be an assignment of V.

13.6 Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Detect only direct
assignments if the for
loop index is known and if
it is a variable symbol.

13.7 Boolean operations whose
results are invariant shall
not be permitted

Boolean operator ’%s’
should not have invariant
result. (Result is always
’true/false’).

Done by verification (gray
Checks). It is also checked
during compilation on
comparison between with a
least one constant operand.

11-49

11 MISRA C® Coding Rules Checker

Control Flow

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

14.1 There shall be no
unreachable code.

This rule is checked during
Polyspace verification (gray
checks).

Since this rule is checked
by verification, and not
the coding rules checker,
it cannot be selected in the
rules configuration file.

14.2 All non-null statements
shall either have at lest
one side effect however
executed, or cause control
flow to change

• All non-null statements
shall either:

• have at lest one side
effect however executed,
or

• cause control flow to
change

14.3 All non-null statements
shall either

• have at lest one side effect
however executed, or

• cause control flow to
change

A null statement shall
appear on a line by itself

We assume that a ’;’ is a
null statement when it is
the first character on a line
(excluding comments). The
rule is violated when:

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else
than a comment after the
’;’ on the same line.

11-50

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

14.4 The goto statement shall
not be used.

The goto statement shall
not be used.

14.5 The continue statement
shall not be used.

The continue statement
shall not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for
loop termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a
single point of exit at the
end of the function

A function shall have a
single point of exit at the
end of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

14.9 An if (expression) construct
shall be followed by a
compound statement.
The else keyword shall
be followed by either a
compound statement, or
another if statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall
be followed by either a
compound statement, or
another if statement

11-51

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

14.10 All if else if constructs
should contain a final else
clause.

All if else if constructs
should contain a final else
clause.

Switch Statements

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

15.0 Unreachable code is
detected between switch
statement and first case.

Note This is not a MISRA
C2004 rule.

switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example,
the rule is displayed in the
log file at line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4 case 1: ...

The code between switch
statement and first case
is checked as gray by
Polyspace verification. It
follows ANSI standard
behavior.

15.1 A switch label shall only
be used when the most
closely-enclosing compound

A switch label shall only
be used when the most
closely-enclosing compound

11-52

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

statement is the body of a
switch statement

statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

15.3 The final clause of a switch
statement shall be the
default clause

The final clause of a switch
statement shall be the
default clause

15.4 A switch expression should
not represent a value that
is effectively Boolean

A switch expression should
not represent a value that
is effectively Boolean

15.5 Every switch statement
shall have at least one case
clause

Every switch statement
shall have at least one case
clause

Functions

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

16.1 Functions shall not be
defined with variable
numbers of arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly
or indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Call graph in the Run-Time
Checks perspective gives
the information). Polyspace
verification also checks that
partially during compilation
phase.

11-53

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

16.3 Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Assumes Rule 8.6 is not
violated.

16.4 The identifiers used in the
declaration and definition of
a function shall be identical.

The identifiers used in the
declaration and definition of
a function shall be identical.

Assumes that rules 8.8,
8.1 and 16.3 are not
violated. All occurrences
are detected.

16.5 Functions with no
parameters shall be
declared with parameter
type void.

Functions with no
parameters shall be
declared with parameter
type void.

Definitions are also
checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

16.7 A pointer parameter in a
function prototype should
be declared as pointer
to const if the pointer is
not used to modify the
addressed object.

Pointer parameter in a
function prototype should
be declared as pointer
to const if the pointer is
not used to modify the
addressed object.

Detected with simple
heuristic algorithm.

16.8 All exit paths from a
function with non-void
return type shall have an
explicit return statement
with an expression.

Missing return value for
non-void function XX.

Warning when a non-void
function is not terminated
with an unconditional
return with an expression.

16.9 A function identifier shall
only be used with either
a preceding &, or with a
parenthesized parameter
list, which may be empty.

Function identifier XX
should be preceded by a &
or followed by a parameter
list.

11-54

MISRA C® Coding Rule Support

Pointers and Arrays

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

Detected with simple
heuristic algorithm.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on operations on
pointers. (p+I, I+p and p-I,
where p is a pointer and I
an integer).

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object
with automatic storage
shall not be assigned to
an object that may persist
after the object has ceased
to exist.

Pointer to a parameter is an
illegal return value. Pointer
to a local is an illegal return
value.

Warning when returning a
local variable address or a
parameter address.

Structures and Unions

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

18.1 All structure or union types
shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

18.4 Unions shall not be used Unions shall not be used.

11-55

11 MISRA C® Coding Rules Checker

Preprocessing Directives

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

19.1 #include statements in a
file shall only be preceded
by other preprocessors
directives or comments

A message is displayed
when a #include directive
is preceded by other
things than preprocessor
directives, comments,
spaces or “new lines”.

19.2 Nonstandard characters
should not occur in header
file names in #include
directives

• A message is displayed
on characters ’, \, " or
/* between < and > in
#include <filename>

• A message is displayed
on characters ’, \or
/* between " and " in
#include "filename"

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• ‘#include’ expects
"FILENAME" or
<FILENAME>

• ‘#include_next’ expects
"FILENAME" or
<FILENAME>

11-56

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

19.4 C macros shall only expand
to a braced initializer, a
constant, a parenthesized
expression, a type qualifier,
a storage class specifier, or
a do-while-zero construct.

Macro ‘<name>’ does not
expand to a compliant
construct.

We assume that a macro
definition does not violate
this rule when it expands
to:

• a braced construct (not
necessarily an initializer)

• a parenthesized
construct (not necessarily
an expression)

• a number

• a character constant

• a string constant (can
be the result of the
concatenation of string
field arguments and
literal strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct

19.5 Macros shall not be #defined
and #undefd within a block. • Macros shall not be

#defined within a block.

• Macros shall not be
#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.

11-57

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

19.7 A function should be used
in preference to a function
like-macro.

Message on all function-like
macros expansions

19.8 A function-like macro shall
not be invoked without all
of its arguments

• arguments given to
macro ‘<name>’

• macro ‘<name>’ used
without args.

• macro ‘<name>’ used
with just one arg.

• macro ‘<name>’
used with too many
(<number>) args.

19.9 Arguments to a
function-like macro shall
not contain tokens that
look like preprocessing
directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the ’#’
character appears in a
macro argument (outside
a string or character
constant)

19.10 In the definition of a
function-like macro each
instance of a parameter
shall be enclosed in
parentheses unless it is
used as the operand of # or
##.

Parameter instance shall be
enclosed in parentheses.

19.11 All macro identifiers in
preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

‘<name>’ is not defined.

11-58

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence
of the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be
used

Message on definitions
of macros using # or ##
operators

19.14 The defined preprocessor
operator shall only be used
in one of the two standard
forms.

‘defined’ without an
identifier.

19.15 Precautions shall be taken
in order to prevent the
contents of a header file
being included twice.

Precautions shall be taken
in order to prevent multiple
inclusions.

When a header file is
formatted as follows:

#ifndef <control macro>
#define <control macro>
<contents> #endif

It is assumed that
precautions have been
taken to prevent multiple
inclusions. Otherwise, a
violation of this MISRA rule
is detected.

11-59

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

19.16 Preprocessing directives
shall be syntactically
meaningful even
when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives
shall reside in the same file
as the #if or #ifdef directive
to which they are related.

• ‘#elif’ not within a
conditional.

• ‘#else’ not within a
conditional.

• ‘#elif’ not within a
conditional.

• ‘#endif’ not within a
conditional.

• unbalanced ‘#endif’.

• unterminated ‘#if’
conditional.

• unterminated ‘#ifdef’
conditional.

• unterminated ‘#ifndef’
conditional.

11-60

MISRA C® Coding Rule Support

Standard Libraries

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

20.1 Reserved identifiers,
macros and functions in
the standard library, shall
not be defined, redefined or
undefined.

• The macro ‘<name> shall
not be redefined.

• The macro ‘<name> shall
not be undefined.

20.2 The names of standard
library macros, objects
and functions shall not be
reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the
rule that is detected as
violated is 20.1. Tentative
of definitions are considered
as definitions.

20.3 The validity of values
passed to library functions
shall be checked.

Validity of values passed to
library functions shall be
checked

Detected with simple
heuristic algorithm.

You can also check this rule
by writing manual stubs
that check the validity of
values.

For example, the following
code checks the validity of
an input being greater than
1:

int my_system_library_call(int in) \
{assert (in>1); if random return -1 \
else return 0; }

11-61

11 MISRA C® Coding Rules Checker

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

20.4 Dynamic heap memory
allocation shall not be used. • The macro ‘<name> shall

not be used.

• Identifier XX should not
be used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2
is not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is
not violated

20.6 The macro offsetof, in
library <stddef.h>, shall not
be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

Assumes that rule 20.2 is
not violated

20.7 The setjmp macro and the
longjmp function shall not
be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling
facilities of <signal.h>
shall not be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case some of the signal
functions are actually
macros and are expanded
in the code, this rule
is detected as violated.
Assumes that rule 20.2 is
not violated

11-62

MISRA C® Coding Rule Support

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

20.9 The input/output library
<stdio.h> shall not be used
in production code.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the input/output
library functions are
actually macros and are
expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is
not violated

20.10 The library functions atof,
atoi and toll from library
<stdlib.h> shall not be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the atof, atoi and
atoll functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.11 The library functions abort,
exit, getenv and system
from library <stdlib.h>
shall not be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the abort, exit,
getenv and system functions
are actually macros and
are expanded, this rule
is detected as violated.
Assumes that rule 20.2 is
not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro ‘<name> shall
not be used.

• Identifier XX should not
be used.

In case the time handling
functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

11-63

11 MISRA C® Coding Rules Checker

Runtime Failures

N. MISRA Definition Messages in log file Detailed Polyspace
Specification

21.1 Minimization of runtime
failures shall be ensured by
the use of at least one of:

• static verification
tools/techniques;

• dynamic verification
tools/techniques;

• explicit coding of checks
to handle runtime faults.

Done by Polyspace
verification (runtime error
checks).

MISRA C Rules Not Checked
The Polyspace coding rules checker does not check the following MISRA C
coding rules. These rules cannot be enforced because they are outside the
scope of Polyspace verification. They may concern documentation, dynamic
aspects, or functional aspects of MISRA rules. The “Comments” column
describes the reason each rule is not checked.

Environment

Rule Description Comments

1.2
(Required)

No reliance shall be placed
on undefined or unspecified
behavior

Not statically checkable
unless the data dynamic
properties is taken into
account

1.3
(Required)

Multiple compilers and/or
languages shall only be
used if there is a common
defined interface standard
for object code to which the

It is a process rule method.

11-64

MISRA C® Coding Rule Support

Rule Description Comments

language/compilers/assemblers
conform.

1.4
(Required)

The
compiler/linker/Identifiers
(internal and external)
shall not rely on
significance of more than
31 characters. Furthermore
the compiler/linker shall be
checked to ensure that 31
character significance and
case sensitivity are supported
for external identifiers.

The documentation of
compiler must be checked.

1.5
(Advisory)

Floating point
implementations should
comply with a defined floating
point standard.

The documentation of
compiler must be checked as
this implementation is done
by the compiler

Language Extensions

Rule Description Comments

2.4
(Advisory)

Sections of code should not be
“commented out”

It might be some pseudo code
or code that does not compile
inside a comment.

11-65

11 MISRA C® Coding Rules Checker

Documentation

Rule Description Comments

3.1
(Required)

All usage of
implementation-defined
behavior shall be documented.

The documentation of
compiler must be checked.
Error detection is based
on undefined behavior,
according to choices made
for implementation-
defined constructions.
Documentation can not
be checked.

3.2
(Required)

The character set and the
corresponding encoding shall
be documented.

The documentation of
compiler must be checked.

3.3
(Advisory)

The implementation of
integer division in the
chosen compiler should be
determined, documented and
taken into account.

The documentation of
compiler must be checked.

3.4
(Required)

All uses of the #pragma
directive shall be documented
and explained.

The documentation of
compiler must be checked.

3.5
(Required)

The implementation-defined
behavior and packing of
bitfields shall be documented
if being relied upon.

The documentation of
compiler must be checked.

3.6
(Required)

All libraries used in
production code shall be
written to comply with the
provisions of this document,
and shall have been subject to
appropriate validation.

The documentation of
compiler must be checked.

11-66

MISRA C® Coding Rule Support

Types

Rule Description Comments

6.2
(Required)

Signed and unsigned char
type shall be used only for the
storage and use of numeric
values.

Note this rule is partially
implemented in Rule 6.1.

Consider an external function
returning a char is been used
and increased. There is no
mean without the functional
knowledge that this function
stores a character value or
not.

Expressions

Rule Description Comments

12.11
(Required)

Evaluation of constant
unsigned expression should
not lead to wraparound.

This rule is partially
implemented using the option
-scalar-overflows-checks
signed-and-unsigned
in Polyspace software.
Concerning possible
preprocessing overflows,
Polyspace preprocessor does
not take into account target
basic types and considers
always 32-Bit long int.

11-67

11 MISRA C® Coding Rules Checker

Functions

Rule Description Comments

16.10
(Required)

If a function returns error
information, then that error
information shall be tested.

Not statically checkable
unless type defining error is
standardized.

Pointers and Arrays

Rule Description Comments

17.1
(Required)

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

Not statically checkable
unless the pointer verification
has been done

17.2
(Required)

Pointer subtraction shall only
be applied to pointers that
address elements of the same
array.

Not statically checkable
unless the pointer verification
has been done

Structures and Unions

Rule Description Comments

18.2
(Required)

An object shall not be assigned
to an overlapping object.

Not statically checkable
unless the data dynamic
properties is taken into
account

18.3
(Required)

An area of memory shall
not be reused for unrelated
purposes.

"purpose" is functional design
issue.

11-68

12

Software Quality with
Polyspace Metrics

• “About Polyspace Metrics” on page 12-2

• “Setting Up Verification to Generate Metrics” on page 12-4

• “Accessing Polyspace Metrics” on page 12-12

• “What You Can Do with Polyspace Metrics” on page 12-15

• “Customizing Software Quality Objectives” on page 12-27

• “Tips for Administering Results Repository” on page 12-40

12 Software Quality with Polyspace® Metrics

About Polyspace Metrics
Polyspace Metrics is a Web-based tool for software development managers,
quality assurance engineers, and software developers, to do the following
in software projects:

• Evaluate software quality metrics

• Monitor the variation of code metrics, coding rule violations, and run-time
checks through the lifecycle of a project

• View defect numbers, run-time reliability of the software, review progress,
and the status of the code with respect to software quality objectives.

If you are a development manager or a quality assurance engineer, through a
Web browser, you can:

• View software quality information about your project. See “Accessing
Polyspace Metrics” on page 12-12.

• Observe trends over time, by project or module. See “Review Overall
Progress” on page 12-15.

• Compare metrics of one project version with those of another. See
“Compare Project Versions” on page 12-19.

If you have the Polyspace product installed on your computer, you can
drill down to coding rule violations and run-time checks in the Polyspace
verification environment. This feature allows you to:

• Review coding rule violations

• Review run-time checks and, if required, classify these checks as defects

In addition, if you think that coding rule violations and run-time checks can
be justified, you can mark them as justified and enter appropriate comments.
See “Review Coding Rule Violations and Run-Time Checks” on page 12-19.

If you are a software developer, Polyspace Metrics allows you to focus on the
latest version of the project that you are working on. You can use the view
filters and drill-down functionality to go to code defects, which you can then
fix. See “Fix Defects” on page 12-24.

12-2

About Polyspace® Metrics

Polyspace calculates metrics that are used to determine whether your code
fulfills predefined software quality objectives. You can redefine these software
quality objectives. See “Customizing Software Quality Objectives” on page
12-27.

12-3

12 Software Quality with Polyspace® Metrics

Setting Up Verification to Generate Metrics
You can run, either manually or automatically, verifications that generate
metrics. In each case, the Polyspace product uses a metrics computation
engine to evaluate metrics for your code, and stores these metrics in a results
repository.

Before you run a verification manually, in the Polyspace verification
environment:

1 Select the Project Manager perspective.

2 In Project Browser, select the project that you want to verify.

3 In the Configuration view, under Analysis options > General, select
the following check boxes:

• Send to Polyspace Server

• Add to results repository

• Calculate code metrics—Generates metrics about code complexity for
the Code Metrics view. See “Review Code Complexity” on page 12-26.

For more information, see Chapter 3, “Setting Up a Verification Project”
and Chapter 6, “Running a Verification”.

To set up scheduled, automatic verification runs, see “Specifying Automatic
Verification” on page 12-4.

Specifying Automatic Verification
You can configure verifications to start automatically and periodically, for
example, at a specific time every night. At the end of each verification, the
software stores results in the repository and updates the project metrics.
You can also configure the software to send you an e-mail at the end of the
verification. This e-mail will contain:

• Links to results

• An attached log file if there are compilation errors

12-4

Setting Up Verification to Generate Metrics

• A summary of new findings, for example, new coding rule violations, and
new potential and actual run-time errors

To configure automatic verification, you must create an XML file
Projects.psproj that has the following elements:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Polyspace Metrics Automatic Verification Project File -->
<Configuration>

<Project>
<Options>
</Options>
<LaunchingPeriod>
</LaunchingPeriod>
<Commands>
</Commands>
<Users>

<User>
</User>

</Users>
</Project>
<SmtpConfiguration>
</SmtpConfiguration>

</Configuration>

Configure the verification by providing data for the elements (and their
attributes) within Configuration. See “Element and Attribute Data for
Projects.psproj” on page 12-6.

After creating Projects.psproj, place the file in the following folder on the
Polyspace server:

/var/Polyspace/results-repository

12-5

12 Software Quality with Polyspace® Metrics

Note If the flag process_automation in your configuration file
polyspace.conf is set to yes, then, when you start your Polyspace Queue
Manager server, Polyspace generates two template files in the results
repository folder:

• ProcessAutomationWindowsTemplate.psproj for Windows

• ProcessAutomationLinuxTemplate.psproj for Linux

Use the appropriate template to create your Projects.psproj file.

For more information about the configuration file polyspace.conf, see
“Manual Configuration of the Polyspace Server” in the Polyspace Installation
Guide.

Element and Attribute Data for Projects.psproj
The following topics describe the data required to configure automatic
verification.

Project. Specify three attributes:

• name. Project name as it appears in Polyspace Metrics.

• language. C, Cpp, Ada, or Ada95. Case insensitive.

• verificationKind. Mode, which is either Integration or Unit-by-Unit.
Case insensitive.

For example,

<Project name="Demo_C" language="C" verificationKind="Integration">

The Project element also contains the following elements:

• “Options” on page 12-7

• “LaunchingPeriod” on page 12-7

• “Commands” on page 12-8

• “Users” on page 12-9

12-6

Setting Up Verification to Generate Metrics

Options. Specify a list of all Polyspace options required for your
verification, with the exception of unit-by-unit, results-dir, prog and
verif-version. If these four options are present, they are ignored.

The following is an example.

<Options>

-O2

-to pass2

-target sparc

-temporal-exclusions-file sources/temporal_exclusions.txt

-entry-points tregulate,proc1,proc2,server1,server2

-critical-section-begin Begin_CS:CS1

-critical-section-end End_CS:CS1

-misra2 all-rules

-includes-to-ignore sources/math.h

-code-metrics

-D NEW_DEFECT

</Options>

LaunchingPeriod. For the starting time of the verification, specify five
attributes:

• hour. Any integer in the range 0–23.

• minute. Any integer in the range 0–59.

• month. Any integer in the range 1–12.

• day. Any integer in the range 1–31.

• weekDay. Any integer in the range 1–7, where 1 specifies Monday.

Use * to specify all values in range, for example, month="*" specifies a
verification every month.

Use - to specify a range, for example, weekDay="1-5" specifies Monday to
Friday.

You can also specify a list for each attribute. For example, day="1,15"
specifies the first and the fifteenth day of the month.

12-7

12 Software Quality with Polyspace® Metrics

Default: If you do not specify attribute data for LaunchingPeriod, then a
verification is started each week day at midnight.

The following is an example.

<LaunchingPeriod hour="12" minute="20" month="*" weekDay="1-5">

Commands. You can provide a list of optional commands. There must be
only one command per line, and these commands must be executable on the
computer that starts the verification.

• GetSource. A command to retrieve source files from the configuration
management system, or the file system of the user. Executed in a
temporary folder on the client computer, which is also used to store results
from the compilation phase of the verification. This temporary folder is
removed after the verification is spooled to the Polyspace server.

For example:

<GetSource>

cvs co r 1.4.6.4 myProject

mkdir sources

cp fvr myProject/*.c sources

</GetSource>

You can also use:

<GetSource>

find / /myProject name *.cpp | tee sources_list.txt

</GetSource>

and add -sources-list-file sources_list.txt to the options list.

• GetVersion. A command to retrieve the version identifier of your project.
Polyspace uses the version identifier as a parameter for -verif-version.

For example:

<GetVersion>

cd / ../myProject ; cvs status Makefile 2>/dev/null | grep 'Sticky Tag:'

| sed 's/Sticky Tag://' | awk '{print $1"-"$3}'| sed 's/).*$//'

</GetVersion>

12-8

Setting Up Verification to Generate Metrics

Users. A list of users, where each user is defined using the element “User”
on page 12-9.

User. Define a user using three elements:

• FirstName. First name of user.

• LastName. Last name of user.

• Mail. Use the attributes resultsMail and compilationFailureMail to
specify conditions for sending an e-mail at the end of verification. Specify
the e-mail address in the element.

- resultsMail. You can use any of the following values:

• ALWAYS. Default. E-mail sent at the end of each automatic verification
(even if there are no new run-time checks or coding rule violations).

• NEW-CERTAIN-FINDINGS. E-mail sent only if verification produces new
red, gray, NTC, or NTL checks.

• NEW-POTENTIAL-FINDINGS. E-mail sent only if verification produces
new orange check.

• NEW-CODING-RULES-FINDINGS. E-mail sent only if verification
produces new coding rule violation or warning.

• ALL-NEW-FINDINGS. E-mail sent if verification produces a new
run-time check or coding rule violation.

- compilationFailureMail. Either Yes (default) or No. If Yes, e-mail
sent when automatic verification fails because of a compilation failure.

The following is an example of Mail.

<Mail resultsMail="NEW-POTENTIAL-FINDINGS|NEW-CODING-RULES-FINDINGS"

compilationFailureMail="yes">

user_id@yourcompany.com

</Mail>

SmtpConfiguration. This element is mandatory for sending e-mail, and you
must specify the following attributes:

• server. Your Simple Mail Transport Protocol (SMTP) server.

• port. SMTP server port. Optional, default is 25.

12-9

12 Software Quality with Polyspace® Metrics

For example:

<SmtpConfiguration server="smtp.yourcompany.com" port="25">

Example of Projects.psproj
The following is an example of Projects.psproj:

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Polyspace Metrics Automatic Verification Project File -->

<Configuration>

<Project name="Demo_C" language="C" verificationKind="Integration">

<Options>

-O2

-to pass2

-target sparc

-temporal-exclusions-file sources/temporal_exclusions.txt

-entry-points tregulate,proc1,proc2,server1,server2

-critical-section-begin Begin_CS:CS1

-critical-section-end End_CS:CS1

-misra2 all-rules

-includes-to-ignore sources/math.h

-code-metrics

-D NEW_DEFECT

</Options>

<LaunchingPeriod hour="12" minute="20" month="*" weekDay="1-5">

</LaunchingPeriod>

<Commands>

<GetSource>

/bin/cp -vr /yourcompany/home/auser/tempfolder/Demo_C_Studio/sources/ .

</GetSource>

<GetVersion>

</GetVersion>

</Commands>

<Users>

<User>

<FirstName>Polyspace</FirstName>

<LastName>User</LastName>

<Mail resultsMail="ALWAYS" compilationFailureMail="yes">userid@yourcompany.com</Mail>

</User>

</Users>

12-10

Setting Up Verification to Generate Metrics

</Project>

<SmtpConfiguration server="smtp.yourcompany.com" port="25">

</SmtpConfiguration>

</Configuration>

12-11

12 Software Quality with Polyspace® Metrics

Accessing Polyspace Metrics

In this section...

“Monitoring Verification Progress” on page 12-13

“Web Browser Support” on page 12-14

To go to the Polyspace Metrics project index, in the address bar of your Web
browser, enter the following URL:

http:// ServerName: PortNumber

where

• ServerName is the name or IP address of the server that is your Polyspace
Queue Manager.

• PortNumber is the Web server port number (default 8080)

See also “Configuring Polyspace Software” in the Polyspace Installation Guide.

The following graphic is an example of a project index.

You can save the project index page as a bookmark for future use. You can
also save as bookmarks any Polyspace Metrics pages that you subsequently
navigate to.

12-12

Accessing Polyspace® Metrics

To refresh the page at any point, click .

At the top of each column, use the filters to shorten the list of displayed
projects. For example:

• In the Project filter, if you enter demo_, the browser displays a list of
projects with names that begin with demo_.

• From the drop-down list for the Language filter, if you select C, the
browser displays only C projects.

If a new verification has been carried out for a project since your last visit

to the project index page, then the icon appears before the name of the
project.

If you place your cursor anywhere on a project row, in a box on the left of the
window, you see the following project information:

• Language — For example, Ada, C, C++.

• Mode — Either Integration or Unit by Unit.

• Last Run Name— Identifier for last verification performed.

• Number of Runs— Number of verifications performed in project.

In a project row, click anywhere to go to the Summary view for that project.

Monitoring Verification Progress
In the Summary > Verification Status column, Polyspace Metrics provides
status information for each verification in the project. The status can be
queued, running, or completed.

If the verification mode is Unit By Unit, the software provides status
information in each unit row. If the verification mode is Integration, the
software provides status information in the parent row only.

If the verification status is running (and you have installed the Polyspace
product on your computer), you can monitor progress of the verification with
the Polyspace Queue Manager.

12-13

12 Software Quality with Polyspace® Metrics

To open the Progress Monitor of the Polyspace Queue Manager:

1 In the Summary > Verification Status column, right-click the parent or
unit cell with the status running.

2 From the context menu, select Follow Progress.

The Progress Monitor opens in the Polyspace verification environment.

For information, see “Monitoring Progress Using Queue Manager” on page
6-16.

Web Browser Support
Polyspace Metrics supports the following Web browsers:

• Internet Explorer® 7, Internet Explorer 6

• Firefox®

Note Polyspace Metrics is optimized for Internet Explorer 7 and Firefox, and
has also been tested — but not optimized — for Internet Explorer 6.

12-14

What You Can Do with Polyspace® Metrics

What You Can Do with Polyspace Metrics

In this section...

“Review Overall Progress” on page 12-15

“Compare Project Versions” on page 12-19

“Review Coding Rule Violations and Run-Time Checks” on page 12-19

“Fix Defects” on page 12-24

“Review Code Complexity” on page 12-26

Review Overall Progress
For a development manager or quality assurance engineer, the Polyspace
Metrics Summary view provides useful high-level information, including
quality trends, over the course of a project.

To obtain the Summary view for a project:

1 Open the Polyspace Metrics project index. See “Accessing Polyspace
Metrics” on page 12-12.

2 Click anywhere in the row that contains your project. You see the
Summary view.

12-15

12 Software Quality with Polyspace® Metrics

At the top of the Summary view, use the From and To filters to specify the
project versions that you want to examine. By default, the From and To
fields specify the earliest and latest project versions respectively.

In addition, by default, the Quality Objectives filter is OFF, and the Display
Mode is Review/Justification Progress (%).

Below the filters, you see:

• Plots that reveal how the number of verified files, uncommented lines,
defects, and run-time selectivity vary over the different versions of your
project

• A table containing summary information about your project versions

With the default filter settings, you can monitor progress in terms of coding
rule violations and run-time checks that quality assurance engineers or
developers have reviewed.

You can also monitor progress in terms of software quality objectives. You
may, for example, want to find out whether the latest version fulfills quality
objectives.

12-16

What You Can Do with Polyspace® Metrics

To display software quality information, from the Quality Objectives
drop-down list, select ON .

Under Software Quality Objectives, you look at Review Progress for the
latest version (V4), which indicates that the review of verification results
is incomplete (only 85.7% reviewed). You also see that the Overall Status
is FAIL. This status indicates that, although the review is incomplete, the
project code fails to meet software quality objectives for the quality level
SQO-4. With this information, you may conclude that you cannot release
version V4 to your customers.

When Polyspace Metrics adds the results for a new project version to the
repository, Polyspace Metrics also imports comments from the previous
version. For this reason, you rarely see the review progress metric at 0% after
verification of the first project version.

Note You may want to find out whether your code fulfills software quality
objectives at another quality level, for example, SQ0-3. Under Software
Quality Objectives, in the Level cell, select SQ0-3 from the drop-down list.

There are seven quality levels, which are based on predefined software
quality objectives. You can customize these software quality objectives and
modify the way quality is evaluated. See “Customizing Software Quality
Objectives” on page 12-27.

To investigate further, under Run-Time Errors, in the Confirmed Defects
cell, you click the link 3. This action takes you to the Run-Time Checks
view, where you see an expanded view of check information for each file in
the project.

12-17

12 Software Quality with Polyspace® Metrics

To view any of these checks in the Polyspace verification environment, in
the appropriate cell, click the numeric value for the check. The Polyspace
verification environment opens with the Run-Time Check perspective
displaying verification information for this check.

Note If you update any check information through the Polyspace verification
environment (see “Review Coding Rule Violations and Run-Time Checks”
on page 12-19), when you return to Polyspace Metrics, click Refresh to
incorporate this updated information.

If you want to view check information with reference to check type, from the
Group by drop-down list, select Run-Time Categories .

12-18

What You Can Do with Polyspace® Metrics

Returning to the Summary view, under Coding Rules and in the Violations
cell, you also see that there are coding rule violations. You may want to
review these violations. See “Review Coding Rule Violations and Run-Time
Checks” on page 12-19.

Compare Project Versions
You can compare metrics of two versions of a project.

1 In the From drop-down list, select one version of your project.

2 In the To drop-down list, select a newer version of your project.

3 Select the Compare check box.

In each view, for example, Summary, you see metric differences and tooltip
messages that indicate whether the newer version is an improvement over
the older version.

Review Coding Rule Violations and Run-Time Checks
If you have installed Polyspace on your computer, you can use Polyspace
Metrics to review and add information about coding rule violations and
run-time checks produced by a verification.

You may use the Review Progress metric in the Summary view to decide
when your team of developers should start work on the next version of the
software. For example, you may wait until the review is complete (Review
Progress cell displays 100%), before informing your development team.

12-19

12 Software Quality with Polyspace® Metrics

Coding Rule Violations
Consider an example, where you see the following in the Summary view.

Review progress is incomplete (31.5%), and there are four coding rule
violations. In the Violations cell, click 4, which takes you to Polyspace
Metrics Coding Rules view.

The Reviewed column reveals the files that you have not reviewed
completely. In this example, example.c is unreviewed (0.0%). To continue
reviewing violations in this file, expand example.c.

You see that there are three violations of rule 17.4.

Note If you want to review coding rule violations with reference to the coding
rules, in the Polyspace Metrics Coding Rules view, from the Group by
drop-down list, select Coding Rules and expand a specific coding rule.

On the row corresponding to rule 17.4, click the value in the Review
Progress cell, 3. This action opens the Polyspace verification environment
and takes you to the Coding Rules perspective. In Assistant Coding Rules,
you see the list of unreviewed violations.

12-20

What You Can Do with Polyspace® Metrics

Double-click a row. In Rule details, you see information about the location
of this violation.

Select the MISRA C view.

If you want to classify the violation as a defect, from the Classification
cell drop-down list, select High, Medium, or Low . This will increment the
Confirmed Defect value in Polyspace Metrics.

You can assign a status to this violation. From the Status drop-down list,
select a status, for example, Fix or No action planned. When you assign a
status to a violation, the software considers the violation to be reviewed.

If you consider the presence of a violation justifiable, select the Justified
check box. In the Comments column, you can enter remarks justifying this
violation.

Save the review. See “Saving Review Comments and Justifications” on page
12-24.

Note Classifying a coding rule violation as a defect or assigning a status
for an unreviewed violation in the Polyspace verification environment,
increases the corresponding metric values (Confirmed Defects and Review
Progress) in the Summary and Coding Rules views of Polyspace Metrics.

12-21

12 Software Quality with Polyspace® Metrics

Run-Time Checks
Consider an example, where you see the following in the Summary view.

Under Run-Time Errors, click any cell value. This action takes you to the
Run-Time Checks view.

The Review Progress column reveals the progress level for each
file, for example, 2.8% for __polyspace__stdstubs.c. Expand
__polyspace__stdstubs.c.

In the row containing the ASRT check, click the value in the red Checks
cell, which opens the Polyspace verification environment with the Run-Time
Checks perspective. The software displays the ASRT check in Assistant
Checks.

12-22

What You Can Do with Polyspace® Metrics

Double-click the row with the ASRT check, which brings the check into
Review Details.

Using the drop-down list for the Classification field, you can classify the
check as a defect (High, Medium, or Low) or specify that the check is Not a
defect.

Using the drop-down list for the Status field, you can assign a status for
the check, for example, Fix or Investigate. When you assign a status, the
software considers the check to be reviewed.

If you think that the presence of the check in your code can be justified,
select the check box Justified. In the Comment field, enter remarks that
justify this check.

Save the review. See “Saving Review Comments and Justifications” on page
12-24.

Note Classifying a run-time check as a defect or assigning a status for an
unreviewed check in the Polyspace verification environment increases the
corresponding metric values (Confirmed Defects and Review Progress) in
the Summary and Run-Time Checks views of Polyspace Metrics.

Specifying Download Folder for Polyspace Metrics
When you click a coding rule violation or run-time check, Polyspace downloads
result files from the Polyspace Metrics web interface to a local folder. You can
specify this folder as follows:

1 Select Options > Preferences > Server configuration.

12-23

12 Software Quality with Polyspace® Metrics

2 If you want to download result files to the folder from which the verification
is launched, select the check box Download results automatically.

3 If this launch folder does not exist, specify another path in the Folder field.

If you do not specify a folder using step 2 or 3, when you click a violation
or check, the software opens a file browser. Use this browser to specify the
download location.

Saving Review Comments and Justifications
By default, when you save your project (Ctrl+S), the software saves your
comments and justifications to a local folder. See “Specifying Download Folder
for Polyspace Metrics” on page 12-23.

If you want to save your comments and justifications to a local folder and
the Polyspace Metrics repository, on the Run-Time Checks toolbar, click the

button .

This default behavior allows you to upload your review comments and
justifications only when you are satisfied that your review is, for example,
correct and complete.

If you want the software to save your comments and justifications to the
local folder and the Polyspace Metrics repository whenever you save your
project (Ctrl+S):

1 Select Options > Preferences > Server configuration.

2 Select the check box Save justifications in the Polyspace Metrics
database.

Note In Polyspace Metrics, click to view updated information.

Fix Defects
If you are a software developer, you can begin to fix defects in code when,
for example:

12-24

What You Can Do with Polyspace® Metrics

• In the Summary view, Review Progress shows 100%

• Your quality assurance engineer informs you

You can use Polyspace Metrics to access defects that you must fix.

Within the Summary view, under Run-Time Errors, click any cell value.
This action takes you to the Run-Time Checks view.

You want to fix defects that are classified as defects.

In the Confirmed Defects column, click a non-zero cell value. For example,
if you click 2, the Polyspace verification environment opens with the checks
visible in Assistant Checks.

Double-click the row containing a check. In Review Details, you see
information about this check.

12-25

12 Software Quality with Polyspace® Metrics

You can now go to the source code and fix the defect.

Review Code Complexity
Polyspace Metrics supports the generation of code complexity metrics. The
majority of these metrics are predefined and based on the Hersteller Initiative
Software (HIS) standard.

To review the complexity of the code in your project, in the Summary view,
click any value in a Code Metrics cell. The Code Metrics view opens.

The software generates numeric values or pass/fail results for various metrics.
For information about:

• The Hersteller Initiative Software (HIS) standard, see HIS Source Code
Metrics.

• Other, non-HIS, code metrics, see “SQO Level 1” on page 12-28.

• How Polyspace evaluates these metrics and how you can customize code
complexity metrics, see “About Customizing Software Quality Objectives”
on page 12-27 and “SQO Level 1” on page 12-28.

12-26

http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf
http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf

Customizing Software Quality Objectives

Customizing Software Quality Objectives

In this section...

“About Customizing Software Quality Objectives” on page 12-27

“SQO Level 1” on page 12-28

“SQO Level 2” on page 12-31

“SQO Level 3” on page 12-31

“SQO Level 4” on page 12-32

“SQO Level 5” on page 12-32

“SQO Level 6” on page 12-32

“SQO Exhaustive” on page 12-33

“Coding Rules Set 1” on page 12-33

“Coding Rules Set 2” on page 12-34

“Run-Time Checks Set 1” on page 12-36

“Run-Time Checks Set 2” on page 12-37

“Run-Time Checks Set 3” on page 12-38

“Status Acronyms” on page 12-39

About Customizing Software Quality Objectives
When you run your first verification to produce metrics, Polyspace software
uses predefined software quality objectives (SQO) to evaluate quality. In
addition, when you use Polyspace Metrics for the first time, Polyspace creates
the following XML file that contains definitions of these software quality
objectives:

RemoteDataFolder/Custom-SQO-Definitions.xml

RemoteDataFolder is the folder where Polyspace stores data generated by
remote verifications. See “Configuring Polyspace Server Software” in the
Polyspace Installation Guide.

12-27

12 Software Quality with Polyspace® Metrics

If you want to customize SQOs and modify the way quality is evaluated, you
must change Custom-SQO-Definitions.xml. This XML file has the following
form:

<?xml version="1.0" encoding="utf-8"?>

<MetricsDefinitions>

SQO Level 1

SQO Level 2

SQO Level 3

SQO Level 4

SQO Level 5

SQO Level 6

SQO Exhaustive

Coding Rules Set 1

Coding Rules Set 2

Run-Time Checks Set 1

Run-Time Checks Set 2

Run-Time Checks Set 3

Status Acronym 1

Status Acronym 2

</MetricsDefinitions>

You can redefine the pass/fail thresholds for the various SQO levels
of Polyspace Metrics by editing the content of elements that make up
MetricsDefinitions, for example, SQO Level 2, and Run-Time Checks Set
1. In addition, you can create elements that contain SQO levels, and coding
rule and run-time check sets that you define. You can use these new elements
to replace or augment the default elements.

The following topics provide information about MetricsDefinitions
elements and how SQO levels are calculated. Use this information when you
modify or create elements.

SQO Level 1
The default SQO Level 1 element is:

<SQO ID="SQO-1">

<!-- HIS metrics -->

<comf>20</comf>

12-28

Customizing Software Quality Objectives

<path>80</path>

<goto>0</goto>

<vg>10</vg>

<calling>5</calling>

<calls>7</calls>

<param>5</param>

<stmt>50</stmt>

<level>4</level>

<return>1</return>

<vocf>4</vocf>

<ap_cg_cycle>0</ap_cg_cycle>

<ap_cg_direct_cycle>0</ap_cg_direct_cycle>

<Num_Unjustified_Violations>MISRA_Rules_Set_1</Num_Unjustified_Violations>

</SQO>

The SQ0 Level 1 element is composed of sub-elements with data that specify
thresholds. The sub-elements represent metrics that are calculated in a
verification. If the metrics do not exceed the thresholds, the code meets the
quality level specified by SQO Level 1.

The following table describes the Hersteller Initiative Software (HIS) standard
metrics specified by the sub-elements and provides default thresholds.

Element Default
threshold

Description of metric

comf 20 Comment density of a file

path 80 Number of paths through a function

goto 0 Number of goto statements

vg 10 Cyclomatic complexity

calling 5 Number of calling functions

calls 7 Number of calls

param 5 Number of parameters per function

stmt 50 Number of instructions per function

level 4 Number of call levels in a function

12-29

12 Software Quality with Polyspace® Metrics

Element Default
threshold

Description of metric

return 1 Number of return statements in a
function

vocf 4 Language scope

ap_cg_cycle 0 Number of recursions

ap_cg_direct_cycle 0 Number of direct recursions

Num_Unjustified_

Violations

See “Coding
Rules Set
1” on page
12-33

Number of unjustified violations of
MISRA C rules specified by “Coding
Rules Set 1” on page 12-33

For more information about these metrics, see HIS Source Code Metrics.

Polyspace Metrics also supports the evaluation of non-HIS code metrics,
which the following table describes.

Element Description of metric

fco Estimated function coupling, which is calculated
as follows:

SOC - DFF + 1

• SOC — Sum (over all file functions) of calls
within body of each function

• DFF— Number of defined file functions

flin Number of lines within function body

fxln Number of execution lines within function body

ncalls Number of calls within function body

pshv Number of protected shared variables

unpshv Number of unprotected shared variables

12-30

http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf

Customizing Software Quality Objectives

To generate these metrics, insert the appropriate sub-elements into the SQO
Level 1 element and specify thresholds:

<SQO ID="SQO-1">

<!-- HIS metrics -->

...

...

<!-- Other non-HIS metrics -->

<fco>user_defined_threshold</fco>

<flin>user_defined_threshold</flin>

<fxln>user_defined_threshold</fxln>

<ncalls>user_defined_threshold</ncalls>

<pshv>user_defined_threshold</pshv>

<unpshv>user_defined_threshold</unpshv>

</SQO>

SQO Level 2
The default SQO Level 2 element is:

<SQO ID="SQO-2" ParentID="SQO-1">

<Num_Unjustified_Red>0</Num_Unjustified_Red>

<Num_Unjustified_NT_Constructs>0</Num_Unjustified_NT_Constructs>

</SQO>

To fulfill requirements of SQO Level 2, the code must meet the requirements
of SQO Level 1 and the following:

• Number of unjustified red checks Num_Unjustified_Red must not be
greater than the threshold (default is zero)

• Number of unjustified NTC and NTL checks
Num_Unjustified_NT_Constructs must not be greater than the threshold
(default is zero)

SQO Level 3
The default SQO Level 3 element is:

<SQO ID="SQO-3" ParentID="SQO-2">

<Num_Unjustified_UNR>0</Num_Unjustified_UNR>

</SQO>

12-31

12 Software Quality with Polyspace® Metrics

To fulfill requirements of SQO Level 3, the code must meet the requirements
of SQO Level 2 and the number of unjustified UNR checks must not exceed
the threshold (default is zero).

SQO Level 4
The default SQO Level 4 element is:

<SQO ID="SQO-4" ParentID="SQO-3">

<Percentage_Proven_Or_Justified>Runtime_Checks_Set_1</Percentage_Proven_Or_Justified>

</SQO>

To fulfill requirements of SQO Level 4, the code must meet the requirements
of SQO Level 3 and the following ratio as a percentage

(green checks + justified orange checks) / (green checks + all orange checks)

must not be less than the thresholds specified by “Run-Time Checks Set 1” on
page 12-36.

SQO Level 5
The default SQO Level 5 element is:

<SQO ID="SQO-5" ParentID="SQO-4">

<Num_Unjustified_Violations>MISRA_Rules_Set_2</Num_Unjustified_Violations>

<Percentage_Proven_Or_Justified>Runtime_Checks_Set_2</Percentage_Proven_Or_Justified>

</SQO>

To fulfill requirements of SQO Level 5, the code must meet the requirements
of SQO Level 4 and the following:

• Number of unjustified violations of MISRA C rules must not exceed
thresholds specified by “Coding Rules Set 2” on page 12-34.

• Percentage of green and justified checks must not be less than the
thresholds specified by “Run-Time Checks Set 2” on page 12-37

SQO Level 6
The default SQO Level 6 element is:

12-32

Customizing Software Quality Objectives

<SQO ID="SQO-6" ParentID="SQO-5">

<Percentage_Proven_Or_Justified>Runtime_Checks_Set_3</Percentage_Proven_Or_Justified>

</SQO>

To fulfill requirements of SQO Level 6, the code must meet the requirements
of SQO Level 5 and the percentage of green and justified checks must not be
less than the thresholds specified by “Run-Time Checks Set 3” on page 12-38.

SQO Exhaustive
The default Exhaustive element is:

<SQO ID="Exhaustive" ParentID="SQO-1">

<Num_Unjustified_Violations>0</Num_Unjustified_Violations>

<Num_Unjustified_Red>0</Num_Unjustified_Red>

<Num_Unjustified_NT_Constructs>0</Num_Unjustified_NT_Constructs>

<Num_Unjustified_UNR>0</Num_Unjustified_UNR>

<Percentage_Proven_Or_Justified>100</Percentage_Proven_Or_Justified>

</SQO>

To fulfill the requirements for this level, the code must meet the requirements
of SQO Level 1and the following:

• Number of unjustified violations of MISRA C rules must not exceed the
threshold (default is zero)

• Number of unjustified red checks must not exceed the threshold (default
is zero)

• Number of unjustified NTC and NTL checks must not exceed the threshold
(default is zero)

• Number of unjustified UNR checks must not exceed the threshold (default
is zero)

• Percentage of green and justified checks must not be less than the
threshold (default is 100%)

Coding Rules Set 1
This element defines a set of MISRA C rules that can be applied to the code
during the compilation phase, with corresponding violation thresholds. The
default structure of Coding Rules Set 1 is:

12-33

12 Software Quality with Polyspace® Metrics

<CodingRulesSet ID="MISRA_Rules_Set_1">

<Rule Name="MISRA_C_8_11">0</Rule>

<Rule Name="MISRA_C_8_12">0</Rule>

<Rule Name="MISRA_C_11_2">0</Rule>

<Rule Name="MISRA_C_11_3">0</Rule>

<Rule Name="MISRA_C_12_12">0</Rule>

<Rule Name="MISRA_C_13_3">0</Rule>

<Rule Name="MISRA_C_13_4">0</Rule>

<Rule Name="MISRA_C_13_5">0</Rule>

<Rule Name="MISRA_C_14_4">0</Rule>

<Rule Name="MISRA_C_14_7">0</Rule>

<Rule Name="MISRA_C_16_1">0</Rule>

<Rule Name="MISRA_C_16_2">0</Rule>

<Rule Name="MISRA_C_16_7">0</Rule>

<Rule Name="MISRA_C_17_3">0</Rule>

<Rule Name="MISRA_C_17_4">0</Rule>

<Rule Name="MISRA_C_17_5">0</Rule>

<Rule Name="MISRA_C_17_6">0</Rule>

<Rule Name="MISRA_C_18_3">0</Rule>

<Rule Name="MISRA_C_18_4">0</Rule>

<Rule Name="MISRA_C_20_4">0</Rule>

</CodingRulesSet>

To modify the default set, you can:

• Add rules by inserting a Rule element with the appropriate Name attribute.
For example, to add MISRA C rule 13.1 with a zero threshold, specify the
following element in CodingRulesSet>

<Rule Name="MISRA_C_13_1">0</Rule>

• Remove rules.

Coding Rules Set 2
This element defines a set of MISRA C rules that can be applied to the code
during the compilation phase, with corresponding violation thresholds. The
default structure of Coding Rules Set 2 is:

12-34

Customizing Software Quality Objectives

<CodingRulesSet ID="MISRA_Rules_Set_2" ParentID="MISRA_Rules_Set_1">

<Rule Name="MISRA_C_6_3">0</Rule>

<Rule Name="MISRA_C_8_7">0</Rule>

<Rule Name="MISRA_C_9_2">0</Rule>

<Rule Name="MISRA_C_9_3">0</Rule>

<Rule Name="MISRA_C_10_3">0</Rule>

<Rule Name="MISRA_C_10_5">0</Rule>

<Rule Name="MISRA_C_11_1">0</Rule>

<Rule Name="MISRA_C_11_5">0</Rule>

<Rule Name="MISRA_C_12_1">0</Rule>

<Rule Name="MISRA_C_12_2">0</Rule>

<Rule Name="MISRA_C_12_5">0</Rule>

<Rule Name="MISRA_C_12_6">0</Rule>

<Rule Name="MISRA_C_12_9">0</Rule>

<Rule Name="MISRA_C_12_10">0</Rule>

<Rule Name="MISRA_C_13_1">0</Rule>

<Rule Name="MISRA_C_13_2">0</Rule>

<Rule Name="MISRA_C_13_6">0</Rule>

<Rule Name="MISRA_C_14_8">0</Rule>

<Rule Name="MISRA_C_14_10">0</Rule>

<Rule Name="MISRA_C_15_3">0</Rule>

<Rule Name="MISRA_C_16_3">0</Rule>

<Rule Name="MISRA_C_16_8">0</Rule>

<Rule Name="MISRA_C_16_9">0</Rule>

<Rule Name="MISRA_C_19_4">0</Rule>

<Rule Name="MISRA_C_19_9">0</Rule>

<Rule Name="MISRA_C_19_10">0</Rule>

<Rule Name="MISRA_C_19_11">0</Rule>

<Rule Name="MISRA_C_19_12">0</Rule>

<Rule Name="MISRA_C_20_3">0</Rule>

</CodingRulesSet>

To modify the default set, you can:

• Add rules by inserting a Rule element with the appropriate Name attribute.
For example, to add MISRA C rule 6.1 with a zero threshold, specify the
following element in CodingRulesSet>

<Rule Name="MISRA_C_6_1">0</Rule>

12-35

12 Software Quality with Polyspace® Metrics

• Remove rules.

Run-Time Checks Set 1
The Run-Time Checks Set 1 is composed of Check elements with data that
specify thresholds. The Name and Type attribute in each Check element
defines a run-time check, while the element data specifies a threshold in
percentage. The default structure of Run-Time Checks Set 1 is:

<RuntimeChecksSet ID="Runtime_Checks_Set_1">

<Check Name="OBAI">80</Check>

<Check Name="ZDV" Type="Scalar">80</Check>

<Check Name="ZDV" Type="Float">80</Check>

<Check Name="NIVL">80</Check>

<Check Name="NIV">60</Check>

<Check Name="IRV">80</Check>

<Check Name="FRIV">80</Check>

<Check Name="FRV">80</Check>

<Check Name="UOVFL" Type="Scalar">60</Check>

<Check Name="UOVFL" Type="Float">60</Check>

<Check Name="OVFL" Type="Scalar">60</Check>

<Check Name="OVFL" Type="Float">60</Check>

<Check Name="UNFL" Type="Scalar">60</Check>

<Check Name="UNFL" Type="Float">60</Check>

<Check Name="IDP">60</Check>

<Check Name="NIP">60</Check>

<Check Name="POW">80</Check>

<Check Name="SHF">80</Check>

<Check Name="COR">60</Check>

<Check Name="NNR">50</Check>

<Check Name="EXCP">50</Check>

<Check Name="EXC">50</Check>

<Check Name="NNT">50</Check>

<Check Name="CPP">50</Check>

<Check Name="OOP">50</Check>

<Check Name="ASRT">60</Check>

</RuntimeChecksSet>

12-36

Customizing Software Quality Objectives

When you use Run-Time Checks Set 1 in evaluating code quality, the software
calculates the following ratio as a percentage for each run-time check in
the set:

(green checks + justified orange checks)/(green checks + all orange checks)

If the percentage values do not exceed the thresholds in the set, the code
meets the quality level.

To modify the default set, you can change the check threshold values.

Run-Time Checks Set 2
This set is similar to “Run-Time Checks Set 1” on page 12-36, but has more
stringent threshold values.

<RuntimeChecksSet ID="Runtime_Checks_Set_2">

<Check Name="OBAI">90</Check>

<Check Name="ZDV" Type="Scalar">90</Check>

<Check Name="ZDV" Type="Float">90</Check>

<Check Name="NIVL">90</Check>

<Check Name="NIV">70</Check>

<Check Name="IRV">90</Check>

<Check Name="FRIV">90</Check>

<Check Name="FRV">90</Check>

<Check Name="UOVFL" Type="Scalar">80</Check>

<Check Name="UOVFL" Type="Float">80</Check>

<Check Name="OVFL" Type="Scalar">80</Check>

<Check Name="OVFL" Type="Float">80</Check>

<Check Name="UNFL" Type="Scalar">80</Check>

<Check Name="UNFL" Type="Float">80</Check>

<Check Name="IDP">70</Check>

<Check Name="NIP">70</Check>

<Check Name="POW">90</Check>

<Check Name="SHF">90</Check>

<Check Name="COR">80</Check>

<Check Name="NNR">70</Check>

<Check Name="EXCP">70</Check>

<Check Name="EXC">70</Check>

<Check Name="NNT">70</Check>

<Check Name="CPP">70</Check>

12-37

12 Software Quality with Polyspace® Metrics

<Check Name="OOP">70</Check>

<Check Name="ASRT">80</Check>

</RuntimeChecksSet>

Run-Time Checks Set 3
This set is similar to “Run-Time Checks Set 1” on page 12-36, but has more
stringent threshold values.

<RuntimeChecksSet ID="Runtime_Checks_Set_3">

<Check Name="OBAI">100</Check>

<Check Name="ZDV" Type="Scalar">100</Check>

<Check Name="ZDV" Type="Float">100</Check>

<Check Name="NIVL">100</Check>

<Check Name="NIV">80</Check>

<Check Name="IRV">100</Check>

<Check Name="FRIV">100</Check>

<Check Name="FRV">100</Check>

<Check Name="UOVFL" Type="Scalar">100</Check>

<Check Name="UOVFL" Type="Float">100</Check>

<Check Name="OVFL" Type="Scalar">100</Check>

<Check Name="OVFL" Type="Float">100</Check>

<Check Name="UNFL" Type="Scalar">100</Check>

<Check Name="UNFL" Type="Float">100</Check>

<Check Name="IDP">80</Check>

<Check Name="NIP">80</Check>

<Check Name="POW">100</Check>

<Check Name="SHF">100</Check>

<Check Name="COR">100</Check>

<Check Name="NNR">90</Check>

<Check Name="EXCP">90</Check>

<Check Name="EXC">90</Check>

<Check Name="NNT">90</Check>

<Check Name="CPP">90</Check>

<Check Name="OOP">90</Check>

<Check Name="ASRT">100</Check>

</RuntimeChecksSet>

12-38

Customizing Software Quality Objectives

Status Acronyms
When you click a link, StatusAcronym elements are passed to the Polyspace
verification environment. This feature allows you to define, through your
Polyspace server, additional items for the drop-down list of the Status field in
Review Details. See “Run-Time Checks” on page 12-22.

Polyspace Metrics provides the following default elements:

<StatusAcronym Justified="yes" Name="Justify with code/model annotations"/>

<StatusAcronym Justified="yes" Name="No action planned"/>

The Name attribute specifies the name that appears on the Status field
drop-down list. If you specify the Justify attribute to be yes, then when you
select the item, for example, No action planned, the software automatically
selects the Justified check box. If you do not specify the Justify attribute,
then the Justified check box is not selected automatically.

You can remove the default elements and create new StatusAcronym
elements, which are available to all users of your Polyspace server.

12-39

12 Software Quality with Polyspace® Metrics

Tips for Administering Results Repository

In this section...

“Through the Polyspace Metrics Web Interface” on page 12-40

“Through Command Line” on page 12-41

“Backup of Results Repository” on page 12-43

Through the Polyspace Metrics Web Interface
You can rename or delete projects and verifications.

Project Renaming
To rename a project:

1 In your Polyspace Metrics project index, right-click the row with the project
that you want to rename.

2 From the context menu, select Rename Project.

3 In the Project field, enter the new name.

Project Deletion
To delete a project:

1 In your Polyspace Metrics project index, right-click the row with the
project that you want to delete.

2 From the context menu, select Delete Project from Repository.

Verification Renaming
To rename a verification:

1 Select the Summary view for your project.

2 In the Verification column, right-click the verification that you want to
rename.

12-40

Tips for Administering Results Repository

3 From the context menu, select Rename Run.

4 In the Project field, edit the text to rename the verification.

Verification Deletion
To delete a verification:

1 Select the Summary view for your project.

2 In the Verification column, right-click the verification that you want
to delete.

3 From the context menu, select Delete Run from Repository.

Through Command Line
You can run the following batch command with various options.

Polyspace_Common/RemoteLauncher/[w]bin/polyspace-results-repository[.exe]

• To rename a project or version, use the following options:

[-f] [-server hostname] -rename [-prog
old_prog -new-prog new_prog]
[-verif-version old_version -new-verif-version new_version]

- hostname — Polyspace server. localhost if you run the command
directly on the server. Can be omitted if, in the Polyspace Preferences
dialog box, on the Server configuration tab, you have specified a
server name or clicked Automatically detect the remote server.
MathWorks does not recommend the latter. See “Configuring Polyspace
Client Software” in the Polyspace Installation Guide.

- old_prog — Current project name

- new_prog — New project name

- old_version — Old version name

- new_version — New version name

- -f — Specifies that no confirmation is requested

• To delete a project or version, use the following options:

12-41

12 Software Quality with Polyspace® Metrics

[-f] [server hostname] -delete -prog
prog [-verif-version version]
[-unit-by-unit|-integration]

- hostname — Polyspace server. localhost if you run the command
directly on the server. Can be omitted if, in the Polyspace Preferences
dialog box, on the Server configuration tab, you have specified a
server name or clicked Automatically detect the remote server.
MathWorks does not recommend the latter. See “Configuring Polyspace
Client Software” in the Polyspace Installation Guide.

- prog — Project name

- version— Version name. If omitted, all versions are deleted

- unit-by-unit|-integration— Delete only unit-by-unit or integration
verifications

- -f — Specifies that no confirmation is requested

• To get information about other commands, for example, retrieve a list of
projects or versions, and download and upload results, use the -h option.

Renaming and Deletion Examples

To change the name of the project psdemo_model_link_sl to Track_Quality:

polyspace-results-repository.exe -prog psdemo_model_link_sl

-new-prog Track_Quality -rename

To delete the fifth verification run with version 1.0 of the project
Track_Quality:

polyspace-results-repository.exe -prog Track_Quality -verif-version 1.0

-run-number 5 -delete

To rename verification 1.2 as 1.0:

polyspace-results-repository.exe -prog Track_Quality -verif-version 1.2

-new-verif-version 1.0 -rename

To rename the fourth verification run with version 1.0 as version 0.4:

polyspace-results-repository.exe -prog Track_Quality -verif-version 1.0

12-42

Tips for Administering Results Repository

-run-number 4 -new-verif-version 0.4 -rename

Backup of Results Repository
To preserve your Polyspace Metrics data, create a backup copy of the results
repository PolyspaceRLDatas/results-repository — PolyspaceRLDatas
is the path to the folder where Polyspace stores data generated by remote
verifications. See “Configuring the Polyspace Server Software” in the
Polyspace Installation Guide.

For example, on a UNIX system, do the following:

1 $cd PolyspaceRLDatas

2 $zip -r Path_to_backup_folder/results-repository.zip
results-repository

If you want to restore data from the backup copy:

1 $cd PolyspaceRLDatas

2 $unzip Path_to_backup_folder/results-repository.zip

12-43

12 Software Quality with Polyspace® Metrics

12-44

13

Using Polyspace Software
in the Eclipse IDE

13 Using Polyspace® Software in the Eclipse™ IDE

Verifying Code in the Eclipse IDE

In this section...

“Creating an Eclipse Project” on page 13-3

“Setting Up Polyspace Verification with Eclipse Editor” on page 13-4

“Launching Verification from Eclipse Editor” on page 13-5

“Reviewing Verification Results from Eclipse Editor” on page 13-6

“Using the Polyspace Spooler” on page 13-6

You can apply the powerful code verification of Polyspace software to code that
you develop within the Eclipse Integrated Development Environment (IDE).

A typical workflow is:

1 Use the Eclipse™ editor to create an Eclipse project and develop code
within your project.

2 Set up the Polyspace verification by configuring analysis options and
settings.

3 Start the verification and monitor the process.

4 Review the verification results.

Install the Polyspace plug-in for Eclipse IDE before you verify code in
Eclipse IDE. For more information, see “Polyspace Plug-In Requirements”
and “Installing the Polyspace Plug-In for Eclipse IDE” in the Polyspace
Installation Guide.

Once you have installed the plug-in, in the Eclipse editor, you have access to:

• A Polyspace menu

• Toolbar buttons you use to launch a verification and open the Polyspace
spooler

• Polyspace Log and Polyspace Setting views

13-2

Verifying Code in the Eclipse™ IDE

Creating an Eclipse Project
If your source files do not belong to an Eclipse project, then create one using
the Eclipse editor:

1 Select File > New > C Project.

2 Clear the Use default location check box.

3 Click Browse to navigate to the folder containing your source files, for
example, C:\Test\Source_c.

4 In the Project name field, enter a name, for example, Demo_C.

13-3

13 Using Polyspace® Software in the Eclipse™ IDE

5 In the Project Type tree, under Executable, select Empty Project .

6 Under Toolchains, select your installed toolchain, for example, MinGW GCC.

7 Click Finish. An Eclipse project is created.

For information on developing code within Eclipse IDE, refer to
www.eclipse.org.

Setting Up Polyspace Verification with Eclipse Editor

Analysis Options
To specify analysis options for your verification:

1 In Project Explorer, select the project or files that you want to verify.

2 Select Polyspace > Configure Project to open the Project Manager
perspective of the Polyspace Verification Environment.

3 Under Analysis options, select your options for the verification process.

4 Save your options.

For information on how to choose your options, see “Options Description” in
the Polyspace Products for C Reference Guide

Note Your Eclipse compiler options for include paths (-I) and symbol
definitions (-D) are automatically added to the list of Polyspace analysis
options.

To view the -I and -D options in the Eclipse editor :

1 Select Project > Properties to open the Properties for Project dialog box.

2 In the tree, under C/C++ General , select Paths and Symbols .

3 Select Includes to view the -I options or Symbols to view the -D options.

13-4

http://www.eclipse.org

Verifying Code in the Eclipse™ IDE

Other Settings
In the Polyspace Settings view, specify:

• In the Results folder field, the location of your results folder .

• The required Verification level, for example, Level4.

You can also do the following in the Polyspace Settings view :

• Generate a main (if the item you select does not contain one) by selecting
the Generate a main check box. If you want to change the default
behavior of the main generator, specify advanced settings through the
-main-generator-writes-variables and -main-generator-calls
options in the Project Manager perspective of the Polyspace Verification
Environment. Select Polyspace > Configure Project to open this
window.

• Specify the -function-called-before-main option. In the Startup
function to call field, enter the name of the function that you want to call
before all selected functions in main.

Launching Verification from Eclipse Editor
To launch a Polyspace verification from the Eclipse editor:

1 Select the file, files, or class that you want to verify.

2 Either right-click and select Start Polyspace Verification, or select
Polyspace > Start Polyspace Verification.

You can see the progress of the verification in the Polyspace Log view. If
you see an error or warning, double-click it to go to the corresponding location
in the source code.

To stop a verification, select Polyspace > Stop Local Verification.

For more information on monitoring the progress of a verification, see Chapter
6, “Running a Verification” in the Polyspace Products for C User Guide.

13-5

13 Using Polyspace® Software in the Eclipse™ IDE

Reviewing Verification Results from Eclipse Editor
Use the Run-Time Checks perspective of the Polyspace Verification
Environment to examine results of the verification:

1 Select Polyspace > Open Verification Results to open the Run-Time
Checks perspective of the Polyspace Verification Environment.

2 If results are available in the specified Results folder, then these results
appear automatically in the Run-Time Checks perspective.

For information on reviewing and understanding Polyspace verification
results, see Chapter 8, “Reviewing Verification Results” in the Polyspace
Products for C User Guide.

Using the Polyspace Spooler
Use the Polyspace spooler to manage jobs running on remote servers. To open
the spooler, select Polyspace > Open Spooler .

For more information, see “Managing Verification Jobs Using the Polyspace
Queue Manager” on page 6-13 in the Polyspace Products for C User Guide.

13-6

Glossary

Glossary

Atomic
In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of verification from the command line, rather than via the
launcher Graphical User Interface.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision.

Certain error
See ”red check.”

Check
A test performed during a verification and subsequently colored red,
orange, green or gray in the viewer.

Code verification
The Polyspace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Dead Code
Code which is inaccessible at execution time under all circumstances
due to the logic of the software executed prior to it.

Development Process
The process used within a company to progress through the software
development lifecycle.

Green check
Code has been proven to be free of runtime errors.

Glossary-1

Glossary

Gray check
Unreachable code; dead code.

Imprecision
Approximations are made during a verification, so data values possible
at execution time are represented by supersets including those values.

mcpu
Micro Controller/Processor Unit

Orange check
A warning that represents a possible error which may be revealed upon
further investigation.

Polyspace Approach
The manner of using verification to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
An verification which includes few inconclusive orange checks is said
to be precise

Progress text
Output during verification to indicate what proportion of the verification
has been completed. Could be considered as a “textual progress bar”.

Red check
Code has been proven to contain definite runtime errors (every
execution will result in an error).

Review
Inspection of the results produced by Polyspace verification.

Scaling option
Option applied when an application submitted for verification proves
to be bigger or more complex than is practical.

Selectivitiy
The ratio (green checks + gray checks + red checks) / (total amount of
checks)

Glossary-2

Glossary

Unreachable code
Dead code.

Verification
The Polyspace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Glossary-3

Glossary

Glossary-4

Index

IndexA
access sequence graph 8-52
active project

definition 10-3
setting 10-3

analysis options 3-19 3-23
generic targets 4-9
MISRA C compliance 3-30 11-3

ANSI compliance 6-9
assistant mode

criterion 8-38
custom methodology 8-41
methodology 8-38
methodology for C 8-38
overview 8-35
reviewing checks 8-43
selection 8-36
use 8-35 8-43

C
call graph 8-51
call tree view 8-14
calling sequence 8-51
cfg. See configuration file
client 1-6 6-2

installation 1-13
verification on 6-30

code view 8-19
coding review progress view 8-14 8-59
coding rule violations

justifying 11-15
Coding Rules perspective 1-6
color-coding of verification results 1-2 to 1-3 8-16
compile

log 7-8
compile log

Project Manager 6-15 6-33
Spooler 6-13 6-16

compile phase 6-9

compliance
ANSI 6-9
MISRA C 1-3 3-30 11-3

configuration file
definition 3-2

contextual verification 2-5
criteria

quality 2-8
custom methodology

definition 8-41

D
data range specifications 2-6
downloading

results 8-8
results using command line 8-10
unit-by-unit verification results 8-11

DRS 2-6

E
error call graph 8-51

F
files

includes 3-12 3-14 3-18
results 3-14 3-18
source 3-10 3-14 to 3-16 3-18

filters 8-53
folders

includes 3-12 3-14 3-18
results 3-14 3-18
sources 3-10 3-12 3-14 to 3-16 3-18

G
generic target processors

definition 4-9
deleting 4-12

Index-1

Index

global variable graph 8-52

H
hardware requirements 7-2
help

accessing 1-14

I
installation

Polyspace Client for C/C++ 1-13
Polyspace products 1-13
Polyspace Server for C/C++ 1-13

J
justifying coding rule violations 11-15

L
level

quality 2-8
licenses

obtaining 1-13
logs

compile
Project Manager 6-15 6-33
Spooler 6-13 6-16

full
Project Manager 6-15 6-33
Spooler 6-13 6-16

stats
Project Manager 6-15 6-33
Spooler 6-13 6-16

viewing
Project Manager 6-15 6-33
Spooler 6-13 6-16

M
manual mode

filters 8-53
overview 8-47
selection 8-47
use 8-47

methodology for C 8-38
MISRA C compliance 1-3

analysis option 3-30 11-3
checking 3-30 11-3
file exclusion 11-7
include folder exclusion 11-8
rules file 11-5
violations 11-12

O
objectives

quality 2-5

P
Polyspace Client for C/C++

installation 1-13
license 1-13

Polyspace In One Click
active project 10-3
overview 10-2
sending files to Polyspace software 10-5
starting verification 10-5
use 10-2

Polyspace products for C
components 1-6
installation 1-13
licenses 1-13
overview 1-2
related products 1-13
user interface 1-6
value 1-2

Polyspace Queue Manager Interface. See Spooler

Index-2

Index

Polyspace Server for C/C++
installation 1-13
license 1-13

Polyspace verification environment
opening 3-3

preferences
assistant configuration 8-38
default server mode 6-9
server detection 7-4
Status 8-61

preprocessed files
troubleshooting with 7-10

procedural entities view 8-14 8-16
reviewed column 8-63

product overview 1-2
progress bar

Project Manager window 6-15 6-33
project

creation 3-2
definition 3-2
file types

configuration file 3-2
desktop file 3-2
Polyspace project model file 3-2

folders
includes 3-3
results 3-3
sources 3-3

saving 3-22
Project Manager

monitoring verification progress 6-15 6-33
opening 3-3
overview 3-3
perspective 3-3
starting verification on client 6-30
starting verification on server 6-9
viewing logs 6-15 6-33
window

progress bar 6-15 6-33
Project Manager perspective 1-6

project model file. See Polyspace project model
file

Q
quality level 2-8
quality objectives 2-5 3-23

R
related products 1-13

Polyspace products for linking toModels 1-13
Polyspace products for verifying Ada

code 1-13
Polyspace products for verifying C++

code 1-13
reports

generation 8-71
results

downloading from server 8-8
downloading using command line 8-10
folder 3-14 3-18
opening 8-12 to 8-13
report generation 8-71
unit-by-unit 8-11

reviewed column 8-63
reviewing coding rule violations,

classification 11-15
reviewing results, classification 8-59
reviewing results, status 8-59 8-61
robustness verification 2-5
rte view. See procedural entities view
Run Time Checks perspective

opening 8-12 to 8-13
Run-Time Checks perspective 1-6

call tree view 8-14
coding review progress view 8-14
modes

selection 8-29
procedural entities view 8-14

Index-3

Index

selected check view 8-14
source code view 8-14
variables view 8-14
window

overview 8-14

S
selected check view 8-14 8-25 8-59
server 1-6 6-2

detection 7-4
information in preferences 7-4
installation 1-13 7-4
verification on 6-9

source code view 8-14 8-19
Spooler 1-6

monitoring verification progress 6-13 6-16
removing verification from queue 8-8
use 6-13 6-16
viewing log 6-13 6-16

Status, user defined 8-61

T
target environment 3-19
troubleshooting failed verification 7-2

V
variables view 8-14 8-26 8-29
verification

Ada code 1-13

C code 1-2
C++ code 1-13
client 6-2
compile phase 6-9
contextual 2-5
failed 7-2
monitoring progress

Project Manager 6-15 6-33
Spooler 6-13 6-16

phases 6-9
results

color-coding 1-2 to 1-3
opening 8-12 to 8-13
report generation 8-71
reviewing 8-8

robustness 2-5
running 6-2
running on client 6-30
running on server 6-9
starting

from Polyspace In One Click 6-2 10-5
from Project Manager 6-2 6-31

stopping 6-34
troubleshooting 7-2
with MISRA C checking 11-11

W
workflow

setting quality objectives 2-5

Index-4

	toc
	Introduction to Polyspace Products
	Introduction to Polyspace Products
	Overview of Polyspace Verification
	The Value of Polyspace Verification
	Ensure Software Reliability
	Decrease Development Time
	Improve the Development Process

	How Polyspace Verification Works
	What is Static Verification
	Exhaustiveness

	Product Components
	Polyspace Products for C
	Polyspace Verification Environment
	Other Polyspace Components

	Installing Polyspace Products
	Related Products
	Polyspace Products for Verifying C++ Code
	Polyspace Products for Verifying Ada Code
	Polyspace Products for Linking to Models

	Polyspace Documentation
	About this Guide
	Related Documentation
	MathWorks Online

	How to Use Polyspace Software
	Polyspace Verification and the Software Development Cycle
	Software Quality and Productivity
	Best Practices for Verification Workflow

	Implementing a Process for Polyspace Verification
	Overview of the Polyspace Process
	Defining Quality Objectives
	Choosing Robustness or Contextual Verification
	Choosing Coding Rules
	Choosing Strict or Permissive Verification Objectives
	Defining Software Quality Levels

	Defining a Verification Process to Meet Your Objectives
	Applying Your Verification Process to Assess Code Quality
	Improving Your Verification Process

	Sample Workflows for Polyspace Verification
	Overview of Verification Workflows
	Software Developers and Testers – Standard Development Process
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Software Developers and Testers – Rigorous Development Process
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Quality Engineers – Code Acceptance Criteria
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Quality Engineers – Certification/Qualification
	User Description

	Model-Based Design Users — Verifying Generated Code
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Project Managers — Integrating Polyspace Verification with Confi
	User Description
	Quality Objectives
	Verification Workflow

	Setting Up a Verification Project
	Creating a Project
	What Is a Project?
	Project Folders
	Opening Polyspace Verification Environment
	Creating New Projects
	Opening Existing Projects
	Closing Existing Projects
	Specifying Source Files
	Specifying Include Folders
	Managing Include File Sequence
	Creating Multiple Verifications
	Creating Multiple Analysis Option Configurations
	Changing Project Location
	Specifying Target Environment
	Specifying Analysis Options
	Configuring Text and XML Editors
	Saving the Project

	Specifying Options to Match Your Quality Objectives
	Quality Objectives Overview
	Choosing Contextual Verification Options
	Choosing Strict or Permissive Verification Options
	Choosing Coding Rules

	Setting Up Project to Check Coding Rules
	Polyspace MISRA Checker Overview
	Checking Compliance with MISRA C Coding Rules

	Setting up Project to Automatically Test Orange Code
	Polyspace Automatic Orange Tester
	Enabling the Automatic Orange Tester

	Setting Up Project to Generate Metrics
	About Polyspace Metrics
	Enabling Polyspace Metrics
	Specifying Automatic Verification

	Emulating Your Runtime Environment
	Setting Up a Target
	Target/Compiler Overview
	Specifying Target Environment
	Specifying Target/Compilation Parameters

	Predefined Target Processor Specifications
	Modifying Predefined Target Processor Attributes
	Defining Generic Target Processors
	Common Generic Targets
	Viewing Existing Generic Targets
	Deleting a Generic Target
	Compiling Operating System Dependent Code (OS-target issues)
	List of Predefined Compilation Flags
	My Target Application Runs on Linux
	My Target Application Runs on Solaris
	My Target Application Runs on Vxworks
	My Target Application Does Not Run on Linux, vxworks nor Solaris

	Address Alignment
	Ignoring or Replacing Keywords Before Compilation
	Content of the myTpl.pl file
	Perl Regular Expression Summary

	Verifying Code That Uses KEIL or IAR Dialects
	How to Gather Compilation Options Efficiently
	Example

	Verifying an Application Without a “Main”
	Main Generator Overview
	Polyspace Client for C/C++ Main Generator
	Polyspace Server for C/C++ Main Generator

	Automatically Generating a Main
	Main for Generated Code
	Manually Generating a Main
	Main Generator Assumptions

	Specifying Data Ranges for Variables and Functions (Contextual V
	Overview of Data Range Specifications (DRS)
	Specifying Data Ranges Using DRS Template
	DRS Configuration Settings
	Pointer Examples
	Specifying Data Ranges Using Existing DRS Configuration
	Editing Existing DRS Configuration
	Specifying Data Ranges Using Text Files
	DRS Text File Format
	Tips for Creating DRS Text Files
	Example DRS Text File

	Variable Scope
	DRS Support for Structures
	DRS Support for Union Members

	Performing Efficient Module Testing with DRS
	Reducing Oranges with DRS
	Why Is DRS Most Effective on Module Testing?
	Example

	Preparing Source Code for Verification
	Stubbing
	Stubbing Overview
	Manual vs. Automatic Stubbing
	Deciding Which Stub Functions to Provide
	Example
	Summary

	Adding Precision Constraints Using Stubs
	Default and Alternative Behavior for Stubbing (PURE and WORST)
	Stubbing Examples
	Function Pointer Cases
	Stubbing Functions with a Variable Argument Number
	Finding Bugs in _polyspace_stdstubs.c
	Example

	Preparing Code for Variables
	Assigning Ranges to Variables/Assert?
	Abstract
	Explanation
	Solution

	Checking Properties on Global Variables: Global Assert
	Modeling Variable Values External to Your Application
	Initializing Variables
	External Variables
	Volatile Variables
	Absolute Addressing

	Verifying Code with Undefined or Undeclared Variables and Functi
	Definition
	Declaration

	Preparing Code for Built-In Functions
	Preparing Multitasking Code
	Polyspace Software Assumptions
	Modelling Synchronous Tasks
	Solution 1
	Solution 2
	Modelling Interruptions and Asynchronous Events, Tasks, andThrea
	Solution 1: Where Interrupts (ISRs) Cannot Ppreempt Each Other
	Solution 2: Where Interrupts Can Preempt Each Other
	Are Interruptions Maskable or Preemptive by Default?
	Shared Variables
	Critical Sections
	Original Code
	File Replacing the Original Include File
	Command Line to Launch Polyspace Verification
	Mutual Exclusion
	Semaphores

	Mailboxes
	Atomicity (Can an Instruction Be Interrupted by Another?)
	Priorities

	Highlighting Known Coding Rule Violations and Run-Time Errors
	Annotating Code to Indicate Known Coding Rule Violations
	Syntax for Coding Rule Violations
	For example:
	Syntax for Sections of Code

	Annotating Code to Indicate Known Run-Time Errors
	Syntax for Run-Time Errors
	For example:
	Syntax for Sections of Code

	Verifying “Unsupported” Code
	Ignoring Assembly Code
	Example: Ignore All Statements; the Rest of the Function Remains
	Example: Automatic Stubbing
	Examples: Empty Body
	Example: #asm and #endasm Support
	Example: What to Do If -discard-asm Fails to Parse an asm Code S

	Dealing with Backward “goto” Statements
	Types Promotion
	Unsigned Integers Promoted to Signed Integers
	What are the Promotions Rules in Operators?
	Example

	Running a Verification
	Before Running Verification
	Types of Verification
	Specifying Source Files to Verify
	Specifying Results Folder
	Specifying Analysis Options Configuration
	Checking for Compilation Problems

	Running Verifications on Polyspace Server
	Starting Server Verification
	What Happens When You Run Verification
	Running Verification Unit-by-Unit
	Managing Verification Jobs Using the Polyspace Queue Manager
	Monitoring Progress of Server Verification
	Monitoring Progress Using Project Manager
	Monitoring Progress Using Queue Manager

	Viewing Verification Log File on Server
	Stopping Server Verification Before It Completes
	Removing Verification Jobs from Server Before They Run
	Changing Order of Verification Jobs in Server Queue
	Purging Server Queue
	Changing Queue Manager Password
	Sharing Server Verifications Between Users
	Security of Jobs in Server Queue
	analysis-keys.txt File
	Example:
	Sharing Verifications Between Accounts
	Magic Key to Share Verifications
	If analysis-keys.txt File is Lost or Corrupted

	Running Verifications on Polyspace Client
	Specifying Source Files to Verify
	Starting Verification on Client
	What Happens When You Run Verification
	Monitoring the Progress of the Verification
	Stopping the Verification Before It is Complete

	Running Verifications from Command Line
	Launching Verifications in Batch
	Managing Verifications in Batch

	Troubleshooting Verification Problems
	Verification Process Failed Errors
	Messages Described in This Section
	Hardware Does Not Meet Requirements
	Message
	Cause
	Solution

	You Did Not Specify the Location of Included Files
	Message
	Cause
	Solution

	Polyspace Software Cannot Find the Server
	Message
	Cause
	Solution

	Limit on Assignments and Function Calls
	Message
	Cause
	Solution

	Compilation Errors
	Compilation Error Overview
	Checking Compilation Before Running Verification
	Configuring a Text Editor
	Examining Compile Log After Launching Verification
	Compiler Messages Described in This Section
	Syntax Error
	Message
	Code Used
	Solution

	Undeclared Identifier
	Message
	Code Used
	Solution

	No Such File or Folder
	Messages
	Code Used
	Solution

	#error directive
	Message
	Code Used
	Solution

	Errors Resulting from Unsupported Non-ANSI Keywords Such as @int

	Link Errors and Warnings
	Link Error Overview
	Examining Preprocessed Code

	Function: Wrong Argument Type
	Polyspace Output
	Solution

	Function: Wrong Argument Number
	Polyspace Output
	Solution

	Variable: Wrong Type
	Polyspace Output
	Solution

	Variable: Signed/Unsigned
	Polyspace Output
	Solution

	Variable: Different Qualifier
	Polyspace Output
	Solution

	Variable: Array Against Variable
	Polyspace Output
	Solution

	Variable: Wrong Array Size
	Polyspace Output
	Solution

	Missing Required Prototype for varargs
	Polyspace Output
	Solution

	Stubbing Errors
	Conflicts Between Standard Library Functions and Polyspace Stubs
	_polyspace_stdstubs.c Compilation Errors
	Example 1
	Example 2
	Example 3
	General Troubleshooting Approaches
	Restart with the -I option
	Include Files with Stubs to Replace Automatic Stubbing
	Create a _polyspace_stdstubs.c File with Necessary Includes
	Provide a .c file Containing a Prototype Function
	Ignore _polyspace_stdstubs.c

	Automatic Stub Creation Errors
	Three Types of Error Messages
	Function Pointer Error
	Message
	Solutions

	Unknown Prototype Error
	Message
	Solution

	Parameter -entry-points Error
	Message
	Solution

	Reducing Verification Time
	Factors Impacting Verification Time
	Displaying Verification Status Information
	Techniques for Improving Verification Performance
	Standard Scaling Options Flow Chart
	Reducing Code Complexity

	Turning Antivirus Software Off
	Tuning Polyspace Parameters
	Impact of Parameter Settings
	Recommended Parameter Tuning

	Subdividing Code
	An Ideal Application Size
	Benefits of Subdividing Code
	Possible Issues with Subdividing Code
	Recommended Approach
	Selecting a Subset of Code
	Example 1
	Example 2
	Example 3

	Reducing Procedure Complexity
	Reducing Task Complexity
	Reducing Variable Complexity
	Choosing Lower Precision

	Obtaining Configuration Information
	Removing Preliminary Results Files

	Reviewing Verification Results
	Before You Review Polyspace Results
	Overview: Understanding Polyspace Results
	Why Gray Follows Red and Green Follows Orange
	Summary

	The Message and What It Means
	Explanation
	Summary

	The C Explanation
	Summary

	Opening Verification Results
	Downloading Results from Server to Client
	Downloading Server Results Using Command Line
	Downloading Results from Unit-by-Unit Verifications
	Opening Verification Results from Project Manager Perspective
	Opening Verification Results from Run-Time Checks Perspective
	Exploring the Run-Time Checks Perspective
	Overview
	Run-Time Checks Pane
	Source Pane
	Review Statistics Pane
	Review Details Pane
	Variable Access Pane
	Call Hierarchy Pane

	Selecting Mode
	Searching Results in Run-Time Checks Perspective
	Setting Character Encoding Preferences
	Opening Results for Generated Code
	Manually Creating the Code Generator Text File

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Viewing Methodology Requirements
	Defining a Custom Methodology
	Reviewing Checks
	Saving Review Comments

	Reviewing Results in Manual Mode
	What Is Manual Mode?
	Switching to Manual Mode
	Selecting a Check to Review
	Displaying the Call Sequence for a Check
	Displaying the Access Graph for Variables
	Filtering Checks
	Example: Filtering IRV Checks
	Example: Filtering Green Checks
	Saving Review Comments

	Tracking Review Progress
	Checking Coding Review Progress
	Reviewing and Commenting Checks
	Defining Custom Status
	Tracking Justified Checks in Procedural Entities View
	Commenting Code to Justify Known Checks
	Copying and Pasting Justifications

	Importing and Exporting Review Comments
	Reusing Review Comments
	Importing Review Comments from Previous Verifications
	Exporting Review Comments to Spreadsheet
	Viewing Checks and Comments Report

	Generating Reports of Verification Results
	Polyspace Report Generator Overview
	Report Templates
	Report Formats
	Gray Checks Reported in Summary vs. Check Details

	Generating Verification Reports
	Running the Report Generator from the Command Line
	-template path
	-format type
	-help or -h
	-output-name filename
	-results-dir folder_paths

	Automatically Generating Verification Reports
	Customizing Verification Reports
	Generating Excel Reports

	Using Polyspace Results
	Review Runtime Errors: Fix Red Errors
	Red Checks Where Gray Checks were Expected
	Using Range Information in Run-Time Checks Perspective
	Viewing Range Information
	Interpreting Range Information
	Diagnosing Errors with Range Information

	Using Pointer Information in Run-Time Checks Perspective
	Messages on Dereferences
	Variables in Structures

	Why Review Dead Code Checks
	Functional Bugs in Gray Code
	Structural Coverage

	Reviewing Orange Checks
	Integration Bug Tracking
	How to Find Bugs in Unprotected Shared Data
	Dataflow Verification
	Data and Coding Rules
	Potential Side Effect of a Red Error
	Relationships Between Variables
	Abstract
	Explanation 1
	Explanation 2
	Summary

	Managing Orange Checks
	Understanding Orange Checks
	What is an Orange Check?
	Sources of Orange Checks
	Orange Checks Due to Code Issues
	Orange Checks Due to Tool Issues

	Too Many Orange Checks?
	Do I Have Too Many Orange Checks?
	How to Manage Orange Checks

	Reducing Orange Checks in Your Results
	Overview: Reducing Orange Checks
	Applying Coding Rules to Reduce Orange Checks
	Coding Rules with a Direct Impact on Selectivity (SQO-subset1)
	Coding Rules with an Indirect Impact on Selectivity (SQO-subset2

	Considering Generated Code
	Improving Verification Precision
	Balancing Precision and Verification Time
	Setting the Analysis Precision Level
	Setting Software Safety Analysis Level
	Example: Orange Checks and Software Safety Analysis Level
	Other Options that Can Improve Precision

	Stubbing Parts of the Code Manually
	Manual vs. Automatic Stubbing
	Stubbing Example
	Emulating Function Behavior with Manual Stubs
	Example

	Describing Multitasking Behavior Properly
	Considering Contextual Verification

	Reviewing Orange Checks
	Overview: Reviewing Orange Checks
	Defining Your Review Methodology
	Performing Selective Orange Review
	Importing Review Comments from Previous Verifications
	Commenting Code to Provide Information During Review
	Working with Orange Checks Caused by Input Data
	Filtering Orange Checks Caused by Inputs
	Additional Information on Orange Checks Caused by Inputs

	Performing an Exhaustive Orange Review
	Cost of Exhaustive Orange Review
	Exhaustive Orange Review Methodology
	Inconclusive Verification and Code Complexity
	Resolving Orange Checks Caused by Basic Imprecision

	Automatically Testing Orange Code
	Automatic Orange Tester Overview
	How the Automatic Orange Tester Works
	Limitations of Dynamic Testing

	Before Using the Automatic Orange Tester
	Launching the Automatic Orange Tester
	Reviewing the Test Results
	Test Campaign Results
	Results Table
	Log

	Refining Data Ranges
	Saving and Reusing Your Configuration
	Exporting Data Ranges for Polyspace Verification
	Configuring Compiler Options
	Technical Limitations
	Unsupported Polyspace Options
	Options with Limitations
	Unsupported C Language Constructions

	Day to Day Use
	Polyspace In One Click Overview
	Using Polyspace In One Click
	Polyspace In One Click Workflow
	Setting the Active Project
	Launching Verification
	Using the Taskbar Icon

	MISRA C Coding Rules Checker
	Polyspace MISRA C Coding Rules Checker Overview
	Setting Up MISRA C Checking
	Setting MISRA C Checking Option
	Creating a MISRA C Rules File
	Excluding Files from MISRA C Checking
	Excluding All Include Folders from MISRA C Checking
	Configuring Text and XML Editors
	Commenting Code to Indicate Known Rule Violations

	Viewing MISRA C Checker Results
	Running a Verification with MISRA C Checking
	Examining MISRA C Violations
	Commenting and Justifying MISRA C Violations
	Opening Source Files from Coding Rules Perspective
	Opening MISRA-C Report
	Generating Coding Rules Report
	Copying and Pasting Justifications

	Coding Rules Assistant
	Polyspace Metrics and Coding Rules Assistant
	Reviewing Assistant Coding Rules

	Software Quality Objective Subsets of Coding Rules
	SQO Subset 1 – Coding Rules with a Direct Impact on Selectivity
	SQO Subset 2 – Coding Rules with an Indirect Impact on Selectivi

	MISRA C Coding Rule Support
	MISRA C Rules Supported
	Environment
	Language Extensions
	Character Sets
	Identifiers
	Types
	Constants
	Declarations and Definitions
	Initialization
	Arithmetic Type Conversion
	Pointer Type Conversion
	Expressions
	Control Statement Expressions
	Control Flow
	Switch Statements
	Functions
	Pointers and Arrays
	Structures and Unions
	Preprocessing Directives
	Standard Libraries
	Runtime Failures

	MISRA C Rules Not Checked
	Environment
	Language Extensions
	Documentation
	Types
	Expressions
	Functions
	Pointers and Arrays
	Structures and Unions

	Software Quality with Polyspace Metrics
	About Polyspace Metrics
	Setting Up Verification to Generate Metrics
	Specifying Automatic Verification
	Element and Attribute Data for Projects.psproj
	Example of Projects.psproj

	Accessing Polyspace Metrics
	Monitoring Verification Progress
	Web Browser Support

	What You Can Do with Polyspace Metrics
	Review Overall Progress
	Compare Project Versions
	Review Coding Rule Violations and Run-Time Checks
	Coding Rule Violations
	Run-Time Checks
	Specifying Download Folder for Polyspace Metrics
	Saving Review Comments and Justifications

	Fix Defects
	Review Code Complexity

	Customizing Software Quality Objectives
	About Customizing Software Quality Objectives
	SQO Level 1
	SQO Level 2
	SQO Level 3
	SQO Level 4
	SQO Level 5
	SQO Level 6
	SQO Exhaustive
	Coding Rules Set 1
	Coding Rules Set 2
	Run-Time Checks Set 1
	Run-Time Checks Set 2
	Run-Time Checks Set 3
	Status Acronyms

	Tips for Administering Results Repository
	Through the Polyspace Metrics Web Interface
	Project Renaming
	Project Deletion
	Verification Renaming
	Verification Deletion

	Through Command Line
	Renaming and Deletion Examples
	Backup of Results Repository

	Using Polyspace Software in the Eclipse IDE
	Verifying Code in the Eclipse IDE
	Creating an Eclipse Project
	Setting Up Polyspace Verification with Eclipse Editor
	Analysis Options
	Other Settings

	Launching Verification from Eclipse Editor
	Reviewing Verification Results from Eclipse Editor
	Using the Polyspace Spooler

	Glossary
	Index

	tables
	Software Quality Levels
	Examples of Common Run-Time Errors
	Predefined Target Processor Specifications
	ST7 (Hiware C compiler : HiCross for ST7)
	ST9 (GNU C compiler : gcc9 for ST9)
	Hitachi H8/300, H8/300L
	Hitachi H8/300H, H8S, H8C, H8/Tiny
	Example: -dialect keil -sfr-types sfr=8
	Example: -dialect iar -sfr-types sfr=8

